Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37176816

RESUMO

Cutleaf groundcherry (Physalis angulata L.), an annual plant containing a variety of active ingredients, has great medicinal value. However, studies on the genetic diversity and population structure of P. angulata are limited. In this study, we developed chloroplast microsatellite (cpSSR) markers and applied them to evaluate the genetic diversity and population structure of P. angulata. A total of 57 cpSSRs were identified from the chloroplast genome of P. angulata. Among all cpSSR loci, mononucleotide markers were the most abundant (68.24%), followed by tetranucleotide (12.28%), dinucleotide (10.53%), and trinucleotide (8.77%) markers. In total, 30 newly developed cpSSR markers with rich polymorphism and good stability were selected for further genetic diversity and population structure analyses. These cpSSRs amplified a total of 156 alleles, 132 (84.62%) of which were polymorphic. The percentage of polymorphic alleles and the average polymorphic information content (PIC) value of the cpSSRs were 81.29% and 0.830, respectively. Population genetic diversity analysis indicated that the average observed number of alleles (Na), number of effective alleles (He), Nei's gene diversity (h), and Shannon information indices (I) of 16 P. angulata populations were 1.3161, 1.1754, 0.1023, and 0.1538, respectively. Moreover, unweighted group arithmetic mean, neighbor-joining, principal coordinate, and STRUCTURE analyses indicated that 203 P. angulata individuals from 16 populations were grouped into four clusters. A molecular variance analysis (AMOVA) illustrated the considerable genetic variation among populations, while the gene flow (Nm) value (0.2324) indicated a low level of gene flow among populations. Our study not only provided a batch of efficient genetic markers for research on P. angulata but also laid an important foundation for the protection and genetic breeding of P. angulata resources.

2.
Genes (Basel) ; 13(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36553558

RESUMO

Physalis angulata var. villosa, rich in withanolides, has been used as a traditional Chinese medicine for many years. To date, few extensive molecular studies of this plant have been conducted. In the present study, the plastome of P. angulata var. villosa was sequenced, characterized and compared with that of other Physalis species, and a phylogenetic analysis was conducted in the family Solanaceae. The plastome of P. angulata var. villosa was 156,898 bp in length with a GC content of 37.52%, and exhibited a quadripartite structure typical of land plants, consisting of a large single-copy (LSC, 87,108 bp) region, a small single-copy (SSC, 18,462 bp) region and a pair of inverted repeats (IR: IRA and IRB, 25,664 bp each). The plastome contained 131 genes, of which 114 were unique and 17 were duplicated in IR regions. The genome consisted of 85 protein-coding genes, eight rRNA genes and 38 tRNA genes. A total of 38 long, repeat sequences of three types were identified in the plastome, of which forward repeats had the highest frequency. Simple sequence repeats (SSRs) analysis revealed a total of 57 SSRs, of which the T mononucleotide constituted the majority, with most of SSRs being located in the intergenic spacer regions. Comparative genomic analysis among nine Physalis species revealed that the single-copy regions were less conserved than the pair of inverted repeats, with most of the variation being found in the intergenic spacer regions rather than in the coding regions. Phylogenetic analysis indicated a close relationship between Physalis and Withania. In addition, Iochroma, Dunalia, Saracha and Eriolarynx were paraphyletic, and clustered together in the phylogenetic tree. Our study published the first sequence and assembly of the plastome of P. angulata var. villosa, reported its basic resources for evolutionary studies and provided an important tool for evaluating the phylogenetic relationship within the family Solanaceae.


Assuntos
Physalis , Solanaceae , Filogenia , Physalis/genética , Solanaceae/genética , Genômica , Repetições de Microssatélites
3.
Biosci Trends ; 16(2): 107-118, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35431289

RESUMO

The aim of the current study was to review the current state and characteristics of the elderly population in China in the context of aging, difficulties and challenges faced by older people, and efforts of the current Chinese Government in this area. The process of population aging in China began to accelerate in the late 1970s and has continued to increase at a rate of about 3.2% per year since then. This process took more than 45 years in developed countries, while it took only about 27 years in China, and aging may continue to increase for a long time. China is now moving toward a superannuated society due to declining fertility rates and increasing life expectancy. There is a great need for care due to the high disease burden among older people. However, more than 1 million "families have lost their only child", and this number is increasing annually by about 76,000; moreover, there are a large number of "deficient families [with an injured family member]" in China. These families face greater difficulties due to aging and need to rely on society for more support given the lack of care provided by their children or spouses. The current study has focused on improving the quality of life of older people, helping them achieve healthy aging, and to assist the country in further providing care for the elderly.


Assuntos
Envelhecimento , Qualidade de Vida , Idoso , Criança , China , Humanos , Expectativa de Vida , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...