Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38712144

RESUMO

PACS (Phosphofurin Acidic Cluster Sorting Protein) proteins are known for their roles in sorting cargo proteins to organelles and can physically interact with WD40 repeat-containing protein WDR37. PACS1, PACS2, and WDR37 variants are associated with multisystemic syndromes and neurodevelopmental disorders characterized by intellectual disability, seizures, developmental delays, craniofacial abnormalities, and autism spectrum disorder. However, the effects of syndromic variants on function in vivo remains unknown. Here, we report the expression pattern of C. elegans orthologs of PACS and WDR37 and their interaction. We show that cePACS-1 and ceWDR-37 co-localize to somatic cytoplasm of many types of cells, and are mutually required for expression, supporting a conclusion that the intermolecular dependence of PACS1/PACS2/PACS-1 and WDR37/WDR-37 is evolutionarily conserved. We further show that editing in PACS1 and PACS2 variants in cePACS-1 changes protein localization in multiple cell types, including neurons. Moreover, expression of human PACS1 can functionally complement C. elegans PACS-1 in neurons, demonstrating conserved functions of the PACS-WDR37 axis in an invertebrate model system. Our findings reveal effects of human variants and suggest potential strategies to identify regulatory network components that may contribute to understanding molecular underpinnings of PACS/WDR37 syndromes.

2.
bioRxiv ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38766017

RESUMO

Mature neurons maintain their distinctive morphology for extended periods in adult life. Compared to developmental neurite outgrowth, axon guidance, and target selection, relatively little is known of mechanisms that maintain mature neuron morphology. Loss of function in C. elegans DIP-2, a member of the conserved lipid metabolic regulator Dip2 family, results in progressive overgrowth of neurites in adults. We find that dip-2 mutants display specific genetic interactions with sax-2 , the C. elegans ortholog of Drosophila Furry and mammalian FRY. Combined loss of DIP-2 and SAX-2 results in severe disruption of neuronal morphology maintenance accompanied by increased release of neuronal extracellular vesicles (EVs). By screening for suppressors of dip-2 sax-2 double mutant defects we identified gain-of-function ( gf ) mutations in the conserved Dopey family protein PAD-1 and its associated phospholipid flippase TAT-5/ATP9A. In dip-2 sax-2 double mutants carrying either pad-1(gf) or tat-5(gf) mutation, EV release is reduced and neuronal morphology across multiple neuron types is restored to largely normal. PAD-1(gf) acts cell autonomously in neurons. The domain containing pad-1 ( gf ) is essential for PAD-1 function, and PAD-1( gf ) protein displays increased association with the plasma membrane and inhibits EV release. Our findings uncover a novel functional network of DIP-2, SAX-2, PAD-1, and TAT-5 that maintains morphology of neurons and other types of cells, shedding light on the mechanistic basis of neurological disorders involving human orthologs of these genes.

3.
bioRxiv ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38645057

RESUMO

Microtubules (MTs) are dynamic components of the cytoskeleton and play essential roles in morphogenesis and maintenance of tissue and cell integrity. Despite recent advances in understanding MT ultrastructure, organization, and growth control, how cells regulate MT organization at the cell cortex remains poorly understood. The EFA-6/EFA6 proteins are recently identified membrane-associated proteins that inhibit cortical MT dynamics. Here, combining visualization of endogenously tagged C. elegans EFA-6 with genetic screening, we uncovered tubulin-dependent regulation of EFA-6 patterning. In the mature epidermal epithelium, EFA-6 forms punctate foci in specific regions of the apical cortex, dependent on its intrinsically disordered region (IDR). We further show the EFA-6 IDR is sufficient to form biomolecular condensates in vitro. In screens for mutants with altered GFP::EFA-6 localization, we identified a novel gain-of-function (gf) mutation in an α-tubulin tba-1 that induces ectopic EFA-6 foci in multiple cell types. tba-1(gf) animals exhibit temperature-sensitive embryonic lethality, which is partially suppressed by efa-6(lf), indicating the interaction between tubulins and EFA-6 is important for normal development. TBA-1(gf) shows reduced incorporation into filamentous MTs but has otherwise mild effects on cellular MT organization. The ability of TBA-1(gf) to trigger ectopic EFA-6 foci formation requires ß-tubulin TBB-2 and the chaperon EVL-20/Arl2. The tba-1(gf)-induced EFA-6 foci display slower turnover, contain the MT-associated protein TAC-1/TACC, and require the EFA-6 MTED. Our results reveal a novel crosstalk between cellular tubulins and cortical MT regulators in vivo.

4.
Nat Commun ; 14(1): 7506, 2023 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980413

RESUMO

Apical extracellular matrices (aECMs) are complex extracellular compartments that form important interfaces between animals and their environment. In the adult C. elegans cuticle, layers are connected by regularly spaced columnar structures known as struts. Defects in struts result in swelling of the fluid-filled medial cuticle layer ('blistering', Bli). Here we show that three cuticle collagens BLI-1, BLI-2, and BLI-6, play key roles in struts. BLI-1 and BLI-2 are essential for strut formation whereas activating mutations in BLI-6 disrupt strut formation. BLI-1, BLI-2, and BLI-6 precisely colocalize to arrays of puncta in the adult cuticle, corresponding to struts, initially deposited in diffuse stripes adjacent to cuticle furrows. They eventually exhibit tube-like morphology, with the basal ends of BLI-containing struts contact regularly spaced holes in the cuticle. Genetic interaction studies indicate that BLI strut patterning involves interactions with other cuticle components. Our results reveal strut formation as a tractable example of precise aECM patterning at the nanoscale.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Colágeno/genética , Matriz Extracelular/genética
5.
Proc Natl Acad Sci U S A ; 120(39): e2302801120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37722038

RESUMO

Primary cilia are specialized organelles supporting the development and function of cells and organisms. Intraflagellar transport (IFT) is essential for cilia formation, maintenance, and function. In C. elegans ciliated sensory neurons, IFT interacts with signaling molecules to generate distinct morphological and function features and also to maintain the integrity of cilia. Here, we report an IFT-dependent feedback control on the conserved MAPKKK DLK-1 in the ciliated sensory neurons. DLK proteins are widely known to act in synapse formation, axon regeneration, and degeneration, but their roles in other neuronal compartments are understudied. By forward genetic screening for altered expression of the endogenously tagged DLK-1 we identified multiple ift mutants showing increased DLK-1 accumulation in the defective sensory endings. We show that in response to acute IFT disruption, DLK-1 accumulates rapidly and reversibly. The expression levels of the transcription factor CEBP-1, known to act downstream of DLK-1 in the development and maintenance of synapses and axons, are also increased in the ciliated sensory neurons of ift mutants. Interestingly, the regulation of CEBP-1 expression shows sensory neuron-type dependency on DLK-1. Moreover, in the sensory neuron AWC, which has elaborate cilia morphology, up-regulated CEBP-1 represses DLK-1 at the transcription level, thereby dampening DLK-1 accumulation. Last, the IFT-dependent regulatory loop of DLK-1 and CEBP-1 offers neuroprotection in a cilia degeneration model. These findings uncover a surveillance mechanism in which tight control on the DLK-1 signaling protects cilia integrity in a context-specific manner.


Assuntos
Proteínas de Caenorhabditis elegans , Cílios , Animais , Cílios/genética , Retroalimentação , Axônios , Caenorhabditis elegans/genética , Regeneração Nervosa , Células Receptoras Sensoriais , MAP Quinase Quinase Quinases , Proteínas de Caenorhabditis elegans/genética
6.
Adv Neurobiol ; 33: 23-42, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37615862

RESUMO

The Cytomatrix Assembled at the active Zone (CAZ) of a presynaptic terminal displays electron-dense appearance and defines the center of the synaptic vesicle release. The protein constituents of CAZ are multiple-domain scaffolds that interact extensively with each other and also with an ensemble of synaptic vesicle proteins to ensure docking, fusion, and recycling. Reflecting the central roles of the active zone in synaptic transmission, CAZ proteins are highly conserved throughout evolution. As the nervous system increases complexity and diversity in types of neurons and synapses, CAZ proteins expand in the number of gene and protein isoforms and interacting partners. This chapter summarizes the discovery of the core CAZ proteins and current knowledge of their functions.


Assuntos
Sinapses , Vesículas Sinápticas , Humanos , Neurônios , Transmissão Sináptica
8.
Genetics ; 223(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36630525

RESUMO

The nematode Caenorhabditis elegans is a research model organism particularly suited to the mechanistic understanding of synapse genesis in the nervous system. Armed with powerful genetics, knowledge of complete connectomics, and modern genomics, studies using C. elegans have unveiled multiple key regulators in the formation of a functional synapse. Importantly, many signaling networks display remarkable conservation throughout animals, underscoring the contributions of C. elegans research to advance the understanding of our brain. In this chapter, we will review up-to-date information of the contribution of C. elegans to the understanding of chemical synapses, from structure to molecules and to synaptic remodeling.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Sinapses/genética , Proteínas de Caenorhabditis elegans/genética , Transdução de Sinais
9.
STAR Protoc ; 4(1): 101959, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36566382

RESUMO

The single-end enhanced cross-linking immunoprecipitation (seCLIP) method is well suited for efficient and unbiased transcriptome-wide interrogation of RNA-binding protein (RBP) interaction sites. Here, we provide a protocol for executing cell-specific seCLIP for any desired RBP in Caenorhabditis elegans. We begin with steps and recommendations for transgene construction and Cas9-mediated chromosomal integration. We provide detailed procedures for isolation of RBP-associated RNA fragments, subsequent library preparation, and sequencing. We further discuss best practices for data analysis, interpretation of results, and troubleshooting. For complete details on the use and execution of this protocol, please refer to Blazie et al. (2021).1.


Assuntos
Caenorhabditis elegans , Proteínas de Ligação a RNA , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Sítios de Ligação , Imunoprecipitação , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transcriptoma
10.
Methods Mol Biol ; 2551: 575-593, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36310226

RESUMO

Liquid-liquid phase separation (LLPS) has emerged as a common biophysical event that facilitates the formation of non-membrane-bound cellular compartments, also termed biomolecular condensates. Since the first report of a biomolecular condensate in the germline of C. elegans, many regulatory hubs have been shown to have similar liquid-like features. With the wealth of molecules now being reported to possess liquid-like features, an impetus has been placed on reconciling LLPS with regulation of specific biological properties in vivo. Herein, we report a methodology used to study LLPS-associated features in C. elegans neurons, illustrated using the RNA granule protein TIAR-2. In axons, TIAR-2 forms liquid-like granules, which following injury are inhibitory to the regeneration process. Measuring the dynamics of TIAR-2 granules provides a tractable biological output to study LLPS function. In conjunction with other established methods to assess LLPS, the results from the protocol outlined provide comprehensive insight regarding this important biophysical property.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Condensados Biomoleculares , Proteínas de Caenorhabditis elegans/genética , Células Germinativas/metabolismo , Axônios/metabolismo
11.
Cereb Cortex ; 33(7): 3866-3881, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35989311

RESUMO

Protein quality control (PQC) is essential for maintaining protein homeostasis and guarding the accuracy of neurodevelopment. Previously, we found that a conserved EBAX-type CRL regulates the protein quality of SAX-3/ROBO guidance receptors in Caenorhabditis elegans. Here, we report that ZSWIM8, the mammalian homolog of EBAX-1, is essential for developmental stability of mammalian brains. Conditional deletion of Zswim8 in the embryonic nervous system causes global cellular stress, partial perinatal lethality and defective migration of neural progenitor cells. CRISPR-mediated knockout of ZSWIM8 impairs spine formation and synaptogenesis in hippocampal neurons. Mechanistic studies reveal that ZSWIM8 controls protein quality of Disabled 1 (Dab1), a key signal molecule for brain development, thus protecting the signaling strength of Dab1. As a ubiquitin ligase enriched with intrinsically disordered regions (IDRs), ZSWIM8 specifically recognizes IDRs of Dab1 through a "disorder targets misorder" mechanism and eliminates misfolded Dab1 that cannot be properly phosphorylated. Adult survivors of ZSWIM8 CKO show permanent hippocampal abnormality and display severely impaired learning and memory behaviors. Altogether, our results demonstrate that ZSWIM8-mediated PQC is critical for the stability of mammalian brain development.


Assuntos
Proteína Reelina , Ubiquitina , Animais , Feminino , Gravidez , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Ligases , Mamíferos/metabolismo , Serina Endopeptidases/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Tecido Nervoso/metabolismo
12.
Sci Rep ; 12(1): 16438, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180459

RESUMO

Coordinating the balance between development and stress responses is critical for organismal survival. However, the cellular signaling controlling this mechanism is not well understood. In Caenorhabditis elegans, it has been hypothesized that a genetic network regulated by NIPI-3/Tibbles may control the balance between animal development and immune response. Using a nipi-3(0) lethality suppressor screen in C. elegans, we reveal a novel role for N-terminal acetyltransferase C complex natc-1/2/3 and histone deacetylase hda-4, in the control of animal development. These signaling proteins act, at least in part, through a PMK-1 p38 MAP kinase pathway (TIR-1-NSY-1-SEK-1-PMK-1), which plays a critical role in the innate immunity against infection. Additionally, using a transcriptional reporter of SEK-1, a signaling molecule within this p38 MAP kinase system that acts directly downstream of C/EBP bZip transcription factor CEBP-1, we find unexpected positive control of sek-1 transcription by SEK-1 along with several other p38 MAP kinase pathway components. Together, these data demonstrate a role for NIPI-3 regulators in animal development, operating, at least in part through a PMK-1 p38 MAPK pathway. Because the C. elegans p38 MAP kinase pathway is well known for its role in cellular stress responses, the novel biological components and mechanisms pertaining to development identified here may also contribute to the balance between stress response and development.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Redes Reguladoras de Genes , Testes Genéticos , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Imidazóis , Imunidade Inata , Sistema de Sinalização das MAP Quinases , Acetiltransferase N-Terminal C/genética , Acetiltransferase N-Terminal C/metabolismo , Nitrilas , Proteínas Quinases/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
13.
MicroPubl Biol ; 20222022.
Artigo em Inglês | MEDLINE | ID: mdl-35622471

RESUMO

UNC-104 and its mammalian ortholog, KIF1A, are microtubule motor proteins required for moving synaptic vesicle precursors from neuronal cell bodies to presynaptic sites. These motor proteins consist of N-terminal motor domain, followed by a neck region, three coiled-coil domains and a FHA domain, and a C-terminal PH domain. Between the coiled-coil 3 and the PH domain is a large uncharacterized region called stalk. In C. elegans unc-104 ( e1265 ), a partial loss of function mutant, synaptic vesicles are retained in the cell body and absent from presynaptic sites. unc-104 ( e1265 ) contains amino acid substitution D1497N in the PH domain and the mutant proteins show reduced PI(4,5)P(2) binding. Through genetic suppressor screening, we identified amino acid substitutions in a conserved region of the stalk that cause intragenic suppression of unc-104 ( e1265 ). Currently, little is known about the functions of the stalk region. Our findings imply potential compensatory or antagonistic interaction between the stalk region and the cargo binding PH domain.

15.
J Neurosci ; 42(18): 3716-3732, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35361703

RESUMO

The limited ability for axonal repair after spinal cord injury underlies long-term functional impairment. Dual leucine-zipper kinase [DLK; MAP kinase kinase kinase 12; MAP3K12] is an evolutionarily conserved MAP3K implicated in neuronal injury signaling from Caenorhabditis elegans to mammals. However, whether DLK or its close homolog leucine zipper kinase (LZK; MAP3K13) regulates axonal repair in the mammalian spinal cord remains unknown. Here, we assess the role of endogenous DLK and LZK in the regeneration and compensatory sprouting of corticospinal tract (CST) axons in mice of both sexes with genetic analyses in a regeneration competent background provided by PTEN deletion. We found that inducible neuronal deletion of both DLK and LZK, but not either kinase alone, abolishes PTEN deletion-induced regeneration and sprouting of CST axons, and reduces naturally-occurring axon sprouting after injury. Thus, DLK/LZK-mediated injury signaling operates not only in injured neurons to regulate regeneration, but also unexpectedly in uninjured neurons to regulate sprouting. Deleting DLK and LZK does not interfere with PTEN/mTOR signaling, indicating that injury signaling and regenerative competence are independently controlled. Together with our previous study implicating LZK in astrocytic reactivity and scar formation, these data illustrate the multicellular function of this pair of MAP3Ks in both neurons and glia in the injury response of the mammalian spinal cord.SIGNIFICANCE STATEMENT Functional recovery after spinal cord injury is limited because of a lack of axonal repair in the mammalian CNS. Dual leucine-zipper kinase (DLK) and leucine zipper kinase (LZK) are two closely related protein kinases that have emerged as regulators of neuronal responses to injury. However, their role in axonal repair in the mammalian spinal cord has not been described. Here, we show that DLK and LZK together play critical roles in axonal repair in the mammalian spinal cord, validating them as potential targets to promote repair and recovery after spinal cord injury. In addition to regulating axonal regeneration from injured neurons, both kinases also regulate compensatory axonal growth from uninjured neurons, indicating a more pervasive role in CNS repair than originally anticipated.


Assuntos
Zíper de Leucina , MAP Quinase Quinase Quinases/metabolismo , Traumatismos da Medula Espinal , Animais , Axônios/fisiologia , Feminino , Leucina/metabolismo , MAP Quinase Quinase Quinases/genética , Masculino , Mamíferos , Camundongos , Regeneração Nervosa/fisiologia , Tratos Piramidais/fisiologia
16.
Front Mol Neurosci ; 14: 709390, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305529

RESUMO

Contacts between the endoplasmic reticulum (ER) and plasma membrane (PM) contain specialized tethering proteins that bind both ER and PM membranes. In excitable cells, ER-PM contacts play an important role in calcium signaling and transferring lipids. Junctophilins are a conserved family of ER-PM tethering proteins. They are predominantly expressed in muscles and neurons and known to simultaneously bind both ER- and PM-localized ion channels. Since their discovery two decades ago, functional studies using junctophilin-deficient animals have provided a deep understanding of their roles in muscles and neurons, including excitation-contraction coupling, store-operated calcium entry (SOCE), and afterhyperpolarization (AHP). In this review, we highlight key findings from mouse, fly, and worm that support evolutionary conservation of junctophilins.

17.
Elife ; 102021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34323215

RESUMO

The translation initiation complex eIF3 imparts specialized functions to regulate protein expression. However, understanding of eIF3 activities in neurons remains limited despite widespread dysregulation of eIF3 subunits in neurological disorders. Here, we report a selective role of the C. elegans RNA-binding subunit EIF-3.G in shaping the neuronal protein landscape. We identify a missense mutation in the conserved Zinc-Finger (ZF) of EIF-3.G that acts in a gain-of-function manner to dampen neuronal hyperexcitation. Using neuron-type-specific seCLIP, we systematically mapped EIF-3.G-mRNA interactions and identified EIF-3.G occupancy on GC-rich 5'UTRs of a select set of mRNAs enriched in activity-dependent functions. We demonstrate that the ZF mutation in EIF-3.G alters translation in a 5'UTR-dependent manner. Our study reveals an in vivo mechanism for eIF3 in governing neuronal protein levels to control neuronal activity states and offers insights into how eIF3 dysregulation contributes to neurological disorders.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Fator de Iniciação 3 em Eucariotos/genética , Neurônios/fisiologia , Biossíntese de Proteínas , RNA de Helmintos/biossíntese , RNA Mensageiro/biossíntese , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fator de Iniciação 3 em Eucariotos/metabolismo
18.
Curr Opin Neurobiol ; 69: 159-169, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33957432

RESUMO

The completion of Caenorhabditis elegans connectomics four decades ago has long guided mechanistic investigation of neuronal circuits. Recent technological advances in microscopy and computation programs have aided re-examination of this connectomics, expanding our knowledge by both uncovering previously unreported synaptic connections and also generating models for neural networks underlying behaviors. Combining molecular information from single cell transcriptomes with elegant tools for cell-specific manipulation has further enhanced the ability to precisely investigate individual neurons in behaving animals. This mini-review aims to provide an overview of new information on connectomics and progress toward a molecular atlas of C. elegans nervous system, and discuss emerging findings on neuronal circuits.


Assuntos
Caenorhabditis elegans , Conectoma , Animais , Redes Neurais de Computação , Neurônios
19.
Genetics ; 218(4)2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-33871019

RESUMO

The junctophilin family of proteins tether together plasma membrane (PM) and endoplasmic reticulum (ER) membranes, and couple PM- and ER-localized calcium channels. Understanding in vivo functions of junctophilins is of great interest for dissecting the physiological roles of ER-PM contact sites. Here, we show that the sole Caenorhabditis elegans junctophilin JPH-1 localizes to discrete membrane contact sites in neurons and muscles and has important tissue-specific functions. jph-1 null mutants display slow growth and development due to weaker contraction of pharyngeal muscles, leading to reduced feeding. In the body wall muscle, JPH-1 colocalizes with the PM-localized EGL-19 voltage-gated calcium channel and ER-localized UNC-68 RyR calcium channel, and is required for animal movement. In neurons, JPH-1 colocalizes with the membrane contact site protein Extended-SYnaptoTagmin 2 (ESYT-2) in the soma, and is present near presynaptic release sites. Interestingly, jph-1 and esyt-2 null mutants display mutual suppression in their response to aldicarb, suggesting that JPH-1 and ESYT-2 have antagonistic roles in neuromuscular synaptic transmission. Additionally, we find an unexpected cell nonautonomous effect of jph-1 in axon regrowth after injury. Genetic double mutant analysis suggests that jph-1 functions in overlapping pathways with two PM-localized voltage-gated calcium channels, egl-19 and unc-2, and with unc-68 for animal health and development. Finally, we show that jph-1 regulates the colocalization of EGL-19 and UNC-68 and that unc-68 is required for JPH-1 localization to ER-PM puncta. Our data demonstrate important roles for junctophilin in cellular physiology, and also provide insights into how junctophilin functions together with other calcium channels in vivo.


Assuntos
Proteínas de Membrana/metabolismo , Transmissão Sináptica , Sinaptotagminas/metabolismo , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Membrana/genética , Junção Neuromuscular/metabolismo , Crescimento Neuronal , Neurônios/citologia , Neurônios/metabolismo , Transporte Proteico , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sinaptotagminas/genética
20.
Elife ; 102021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33475086

RESUMO

The conserved MAP3K Dual-Leucine-Zipper Kinase (DLK) and Leucine-Zipper-bearing Kinase (LZK) can activate JNK via MKK4 or MKK7. These two MAP3Ks share similar biochemical activities and undergo auto-activation upon increased expression. Depending on cell-type and nature of insults DLK and LZK can induce pro-regenerative, pro-apoptotic or pro-degenerative responses, although the mechanistic basis of their action is not well understood. Here, we investigated these two MAP3Ks in cerebellar Purkinje cells using loss- and gain-of function mouse models. While loss of each or both kinases does not cause discernible defects in Purkinje cells, activating DLK causes rapid death and activating LZK leads to slow degeneration. Each kinase induces JNK activation and caspase-mediated apoptosis independent of each other. Significantly, deleting CELF2, which regulates alternative splicing of Map2k7, strongly attenuates Purkinje cell degeneration induced by LZK, but not DLK. Thus, controlling the activity levels of DLK and LZK is critical for neuronal survival and health.


Assuntos
MAP Quinase Quinase Quinases/genética , Células de Purkinje/metabolismo , Transdução de Sinais , Animais , Sobrevivência Celular , MAP Quinase Quinase Quinases/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...