Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 15(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37447286

RESUMO

Auraptene (7-geranyloxycoumarin) is the abundant prenyloxycoumarin found in the fruits of Citrus spp. Auraptene has a variety of pharmacological and therapeutic functions, such as anticancer, antioxidant, immunomodulatory, and anti-inflammation activities, with excellent safety profiles. In this study, we evaluated the anticoronaviral activity of auraptene in HCoV-OC43-infected human lung fibroblast MRC-5 cells. We found that auraptene effectively inhibited HCoV-OC43-induced cytopathic effects with 4.3 µM IC50 and 6.1 µM IC90, resulting in a selectivity index (CC50/IC50) of >3.5. Auraptene treatment also decreased viral RNA levels in HCoV-OC43-infected cells, as detected through quantitative real-time PCR, and decreased the expression level of spike proteins and nucleocapsid proteins in virus-infected cells, as detected through the Western blot analysis and immunofluorescence staining. Time-of-addition analysis showed auraptene's inhibitory effects at the post-entry stage of the virus life cycle; however, auraptene did not induce the antiviral interferon families, IFN-α1, IFN-ß1, and IFN-λ1. Additionally, auraptene-treated MRC-5 cells during HCoV-OC43 infection decreased the MMP-9 mRNA levels which are usually increased due to the infection, as auraptene is a previously reported MMP-9 inhibitor. Therefore, auraptene showed antiviral activity against HCoV-OC43 infection, and we suggest that auraptene has the potential to serve as a therapeutic agent against human coronavirus.


Assuntos
Infecções por Coronavirus , Coronavirus Humano OC43 , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Coronavirus Humano OC43/genética , Metaloproteinase 9 da Matriz
2.
J Clin Virol ; 164: 105497, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37253299

RESUMO

BACKGROUND: Rotavirus group A (RVA) is a causative agent of acute gastroenteritis among young children worldwide, despite the global expansion of rotavirus vaccination. In Korea, although the prevalence of RVA has been reduced among young children owing to vaccination, nosocomial infections still occur among neonates. OBJECTIVES: The aim of this study was to investigate the molecular epidemiology of RVA strains associated with several neonatal outbreaks in Seoul from 2017 to 2020. STUDY DESIGN: Clinical and environmental samples were collected and screened for the presence of RVA using ELISA and PCR targeting VP6, respectively. RVA-positive strains were genotyped via RT-PCR and subsequent sequencing of VP4 and VP7 and were phylogenetically compared with RVA strains from other countries. RESULTS: During 2017-2020, a total of 15 RVA outbreaks occurred at neonatal facilities (six in hospital neonatal wards and nine in postpartum care centers) in Seoul, and only two RVA genotypes were detected: G4P[6] and G8P[6]. G8P[6] emerged in Seoul November 2018 and immediately became the predominant genotype among neonates, at least up to 2020. Phylogenetic analysis revealed that the G8P[6] genotype in this study was closely related to G8P[6] strains first identified in Korea in 2017, but differed from G8P[6] strains detected in Africa. CONCLUSIONS: A novel G8P[6] genotype of RVA strains has emerged and caused outbreaks among neonates in Seoul. Continued surveillance for circulating RVA genotypes is imperative to monitor genotype changes and their potential risks to public health.


Assuntos
Infecção Hospitalar , Surtos de Doenças , Epidemiologia Molecular , Filogenia , Infecções por Rotavirus , Rotavirus , Feminino , Humanos , Recém-Nascido , Fezes/virologia , Genótipo , Rotavirus/genética , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/virologia , Seul/epidemiologia , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/virologia , Proteínas do Capsídeo/genética , Microbiologia Ambiental , Masculino
3.
Nutrients ; 15(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36986065

RESUMO

A natural chalcone, cardamonin (2',4'-dihydroxy-6'-methoxychalcone; CDN) was isolated from the seeds of Alpinia katsumadai Hayata, which has been traditionally used to treat stomach aches. CDN has been reported to possess various pharmacological properties, including anticancer and anti-inflammatory effects. This study evaluated the antiviral activity of CDN against human coronavirus HCoV-OC43 and determined the mode of action in HCoV-OC43-infected human lung cell lines (MRC-5 and A549 cells). CDN significantly inhibited HCoV-OC43-induced cytopathic effects with an IC50 of 3.62 µM and a CC50 of >50 µM, resulting in a selectivity index of >13.81. CDN treatment reduced the level of viral RNA and the expression of spike and nucleocapsid proteins in HCoV-OC43-infected cells as determine through qRT-PCR and Western blot analysis. Additionally, the activation of p38 mitogen-activated protein kinase (MAPK) by anisomycin decreased viral protein expression, whereas an inhibitor of p38 MAPK signaling, SB202190, increased viral protein expression. CDN also amplified and extended the p38 MAPK signaling pathway in HCoV-OC43-infected cells. In conclusion, CDN inhibited HCoV-OC43 infection by activating the p38 MAPK signaling pathway and has potential as a therapeutic agent against human coronavirus.


Assuntos
Chalconas , Infecções por Coronavirus , Coronavirus Humano OC43 , Humanos , Coronavirus Humano OC43/genética , Chalconas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Pulmão/metabolismo , Proteínas Virais
4.
Healthcare (Basel) ; 10(10)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36292286

RESUMO

Long-term sequelae refer to persistent symptoms or signs for >6 months after SARS-CoV-2 infection. The most common symptoms of sequelae are fatigue and neuropsychiatric symptoms (concentration difficulty, amnesia, cognitive dysfunction, anxiety, and depression). However, approved treatments have not been fully established. Herbal medicines are administered for 12 weeks to patients who continuously complain of fatigue or cognitive dysfunction for >4 weeks that only occurred after COVID-19 diagnoses. Based on the Korean Medicine syndrome differentiation diagnosis, patients with fatigue will be administered Bojungikgi-tang or Kyungok-go, whereas those with cognitive dysfunction will be administered Cheonwangbosim-dan. Results could support evidence that herbal medicines may mitigate fatigue and cognitive dysfunction caused by COVID-19. Furthermore, by investigating the effects of herbal medicines on changes in metabolite and immune response due to COVID-19, which may be responsible for sequelae, the potential of herbal medicines as one of the therapeutic interventions for post-acute sequelae of SARS-CoV-2 infection can be evaluated. Therefore, the effects of herbal medicine on fatigue and cognitive dysfunction sequelae due to COVID-19 will be elucidated in this study to provide an insight into the preparation of medical management for the post-acute sequelae of SARS-CoV-2 infection.

5.
Biomedicines ; 10(5)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35625907

RESUMO

The natural plant dietary polyphenols 1,2,3,4,6-O-Pentagalloylglucose (PGG) and proanthocyanidin (PAC) have potent antioxidant activity and a variety of pharmacological activities, including antiviral activity. In this study, we examined the inhibitory effect of PGG and PAC on SARS-CoV-2 virus infection, and elucidated its mode of action. PGG and PAC have dose-dependent inhibitory activity against SARS-CoV-2 infection in Vero cells. PGG has a lower IC50 (15.02 ± 0.75 µM) than PAC (25.90 ± 0.81 µM), suggesting that PGG has better inhibitory activity against SARS-CoV-2 than PAC. The PGG and PAC inhibit similar Mpro activities in a protease activity assay, with IC50 values of 25-26 µM. The effects of PGG and PAC on the activity of the other essential SARS-CoV-2 viral protein, RdRp, were analyzed using a cell-based activity assay system. The activity of RdRp is inhibited by PGG and PAC, and PGG has a lower IC50 (5.098 ± 1.089 µM) than PAC (21.022 ± 1.202 µM), which is consistent with their inhibitory capacity of SARS-CoV-2 infection. PGG and PAC also inhibit infection by SARS-CoV and MERS-CoV. These data indicate that PGG and PAC may be candidate broad-spectrum anticoronaviral therapeutic agents, simultaneously targeting the Mpro and RdRp proteins of SARS-CoV-2.

6.
Pharmaceutics ; 14(2)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35214108

RESUMO

The rhizome of Dryopteris crassirhizoma Nakai. (Dryopteridaceae) has been used in traditional medicine in East Asia and has recently been reported to have anticancer, anti-inflammation, and antibacterial activity as well as antiviral activity. Natural phloroglucinols from D. crassirhizoma, dryocrassin ABBA and filixic acid ABA were reported to inhibit influenza virus infection with an inhibitory activity on neuraminidase. In this study, we found that dryocrassin ABBA and filixic acid ABA have an inhibitory activity against the main protease of SARS-CoV-2. Therefore, dryocrassin ABBA and filixic acid ABA exhibited inhibitory activity against SARS-CoV-2 infection in Vero cells dose-dependently using the immunofluorescence-based antiviral assays. Moreover, these compounds inhibited SARS-CoV and MERS-CoV infection, suggesting their broad-spectrum anticoronaviral activity. In addition, a 5-day repeated-dose toxicity study of dryocrassin ABBA and filixic acid ABA suggested that an approximately lethal dose of these compounds in mice was >10 mg/kg. Pharmacokinetic studies of dryocrassin ABBA showed good microsomal stability, low hERG inhibition, and low CYP450 inhibition. In vivo pharmacokinetic properties of dryocrassin ABBA showed a long half-life (5.5-12.6 h) and high plasma exposure (AUC 19.3-65 µg·h/mL). Therefore, dryocrassin ABBA has therapeutic potential against emerging coronavirus infections, including COVID-19.

7.
Pharmaceutics ; 13(11)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34834252

RESUMO

Cardiotonic steroids are steroid-like natural compounds known to inhibit Na+/K+-ATPase pumps. To develop a broad-spectrum antiviral drug against the emerging coronavirus infection, this study assessed the antiviral properties of these compounds. The activity of seven types of cardiotonic steroids against the MERS-CoV, SARS-CoV, and SARS-CoV-2 coronavirus varieties was analyzed using immunofluorescence antiviral assay in virus-infected cells. Bufalin, cinobufagin, and telocinobufagin showed high anti-MERS-CoV activities (IC50, 0.017~0.027 µM); bufalin showed the most potent anti-SARS-CoV and SARS-CoV-2 activity (IC50, 0.016~0.019 µM); cinobufotalin and resibufogenin showed comparatively low anti-coronavirus activity (IC50, 0.231~1.612 µM). Differentially expressed genes in Calu3 cells treated with cinobufagin, telocinobufagin, or bufalin, which had high antiviral activity during MERS-CoV infection were analyzed using QuantSeq 3' mRNA-Seq analysis and data showed similar gene expression patterns. Furthermore, the intraperitoneal administration of 10 mg/kg/day bufalin, cinobufagin, or digitoxin induced 100% death after 1, 2, and 4 days in 5-day repeated dose toxicity studies and it indicated that bufalin had the strongest toxicity. Pharmacokinetic studies suggested that telocinobufagin, which had high anti-coronavirus activity and low toxicity, had better microsomal stability, lower CYP inhibition, and better oral bioavailability than cinobufagin. Therefore, telocinobufagin might be the most promising cardiotonic steroid as a therapeutic for emerging coronavirus infections, including COVID-19.

8.
Phytomedicine ; 93: 153796, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34689117

RESUMO

BACKGROUND: Bavachin, a flavonoid compound isolated from the seeds and fruits of Psoralea corylifolia l. (family Fabaceae), is used as a traditional medicine in Asia. Indeed, it is reported to have various medicinal functions such as estrogenic and antiinflammatory activities among others. However, to date, the effects of bavachin on T cell activation have yet to be reported. PURPOSE AND STUDY DESIGN: We aimed to determine the effects of bavachin on the activation of a human T cell line in vitro and on antigen-specific immune responses in mice in vivo. METHODS: In a nuclear factor of activated T cells (NFAT) activity assay, the Jurkat T cell line expressing a luciferase reporter driven by an NFAT-response element was stimulated with antihuman CD3/CD28 antibody and bavachin. Furthermore, the level of cytokine production was measured in the Jurkat T cell line stimulated with phorbol 12-myristate 13-acetate/ionomycin and bavachin using an IL-2 ELISA and a cytometric bead array assay. For in vivo analyses, mice were subcutaneously immunized with an antigen (ovalbumin protein) and bavachin, and the immune responses of mice were analyzed by FACS analysis, a T cell proliferation assay, a cytokine ELISA, and an antiovalbumin-specific antibody ELISA. RESULTS: We found that bavachin activated NFAT-mediated transcription in the human T cell line in vitro. In mice, when bavachin was administered with the antigen, an increase in T cell responses and antibody production specific to the antigen was observed. CONCLUSION: Our results suggest that bavachin has immunoadjuvant and immunomodulation effects, which arise through activation of the NFAT signaling pathway.


Assuntos
Adjuvantes Imunológicos , Fatores de Transcrição NFATC , Animais , Flavonoides , Humanos , Interleucina-2 , Células Jurkat , Camundongos , Transdução de Sinais
9.
Biomedicines ; 9(8)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34440200

RESUMO

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), urgently needs effective prophylactic and therapeutic drugs. RNA-dependent RNA polymerase (RdRp), essential for replicating and transcribing a viral RNA genome, is highly conserved in coronaviruses; thus, it is a potential target for inhibiting coronavirus infection. In this study, we generated the cell-based SARS-CoV-2 RdRp activity assay system by modifying a previously reported cell-based MERS-CoV RdRp activity assay system to screen for SARS-CoV-2 RdRp inhibitors. The assay system consisted of an expression plasmid encoding SARS-CoV-2 RdRp and an RdRp activity reporter plasmid. RdRp activity in the cells could be conveniently detected by luminescence after transfection. We confirmed that SARS-CoV-2 RdRp replicated double-stranded RNA using immunofluorescence staining and the inhibition of RdRp activity by remdesivir and lycorine using this system. Moreover, the Z-factor of this system was calculated to be 0.798, suggesting the reproducibility and reliability of the high-throughput screening system. Finally, we screened nucleoside and nucleotide analogs and identified adefovir dipivoxil, emtricitabine, telbivudine, entecavir hydrate, moroxydine and rifampin as novel SARS-CoV-2 RdRp inhibitors and therapeutic candidates for COVID-19 This system provides an effective high-throughput screening system platform for developing potential prophylactic and therapeutic drugs for COVID-19 and emerging coronavirus infections.

10.
Phytomedicine ; 86: 153440, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33376043

RESUMO

BACKGROUND: Highly effective novel treatments need to be developed to suppress emerging coronavirus (CoV) infections such as COVID-19. The RNA dependent RNA polymerase (RdRp) among the viral proteins is known as an effective antiviral target. Lycorine is a phenanthridine Amaryllidaceae alkaloid isolated from the bulbs of Lycoris radiata (L'Hér.) Herb. and has various pharmacological bioactivities including antiviral function. PURPOSE: We investigated the direct-inhibiting action of lycorine on CoV's RdRp, as potential treatment for emerging CoV infections. METHODS: We examined the inhibitory effect of lycorine on MERS-CoV, SARS-CoV, and SARS-CoV-2 infections, and then quantitatively measured the inhibitory effect of lycorine on MERS-CoV RdRp activity using a cell-based reporter assay. Finally, we performed the docking simulation with lycorine and SARS-CoV-2 RdRp. RESULTS: Lycorine efficiently inhibited these CoVs with IC50 values of 2.123 ± 0.053, 1.021 ± 0.025, and 0.878 ± 0.022 µM, respectively, comparable with anti-CoV effects of remdesivir. Lycorine directly inhibited MERS-CoV RdRp activity with an IC50 of 1.406 ± 0.260 µM, compared with remdesivir's IC50 value of 6.335 ± 0.731 µM. In addition, docking simulation showed that lycorine interacts with SARS-CoV-2 RdRp at the Asp623, Asn691, and Ser759 residues through hydrogen bonding, at which the binding affinities of lycorine (-6.2 kcal/mol) were higher than those of remdesivir (-4.7 kcal/mol). CONCLUSIONS: Lycorine is a potent non-nucleoside direct-acting antiviral against emerging coronavirus infections and acts by inhibiting viral RdRp activity; therefore, lycorine may be a candidate against the current COVID-19 pandemic.


Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Antivirais/farmacologia , Fenantridinas/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Animais , Chlorocebus aethiops , Ligação de Hidrogênio , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Simulação de Acoplamento Molecular , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Células Vero , Proteínas Virais
11.
Bioorg Med Chem Lett ; 31: 127667, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33160024

RESUMO

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) continues to spread worldwide, with 25 million confirmed cases and 800 thousand deaths. Effective treatments to target SARS-CoV-2 are urgently needed. In the present study, we have identified a class of cyclic sulfonamide derivatives as novel SARS-CoV-2 inhibitors. Compound 13c of the synthesized compounds exhibited robust inhibitory activity (IC50 = 0.88 µM) against SARS-CoV-2 without cytotoxicity (CC50 > 25 µM), with a selectivity index (SI) of 30.7. In addition, compound 13c exhibited high oral bioavailability (77%) and metabolic stability with good safety profiles in hERG and cytotoxicity studies. The present study identified that cyclic sulfonamide derivatives are a promising new template for the development of anti-SARS-CoV-2 agents.


Assuntos
Antivirais/farmacologia , Descoberta de Drogas , SARS-CoV-2/efeitos dos fármacos , Sulfonamidas/farmacologia , Animais , Antivirais/síntese química , Antivirais/química , Linhagem Celular , Chlorocebus aethiops , Cricetulus , Cães , Relação Dose-Resposta a Droga , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ratos , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Tratamento Farmacológico da COVID-19
12.
Front Microbiol ; 11: 545591, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33262742

RESUMO

The emergence of third-generation cephalosporin resistance in Escherichia coli is increasing at an alarming rate in many countries. Thus, the aim of this study was to analyze co-infecting bla CTX-M-producing pathogenic E. coli isolates linked to three school outbreaks. Among 66 E. coli isolates, 44 were identified as ETEC O25, an ETEC isolate serotype was O2, and the other 21 were confirmed as EAEC O44. Interestingly, six patients were co-infected with EAEC O44 and ETEC O25. For these isolates, molecular analysis [antibiotic susceptibility testing, identification of the ß-lactamase gene, multilocus sequence typing (MLST), and pulsed-field gel electrophoresis (PFGE)] was performed for further characterization. In addition, the transmission capacity of bla CTX-M genes was examined by conjugation experiments. Whole-genome sequencing (WGS) was performed on representative EAEC O44 and ETEC O25 isolates associated with co-infection and single-infection. All isolates were resistant to cefotaxime and ceftriaxone. All EAEC isolates carried the bla CTX-M-14 gene and all ETEC isolates the bla CTX-M-15 gene, as detected by multiplex PCR and sequencing analysis. Sequence type and PFGE results indicated three different patterns depending on the O serotype. WGS results of representative isolates revealed that the ETEC O25 strains harbored bla CTX-M-15 located on IncK plasmids associated with the Δbla TEM-bla CTX-M-15-orf477 transposon. The representative EAEC O44 isolates carried bla CTX-M-14 on the chromosome, which was surrounded by the ISEcp1-bla CTX-M-14-IS903 transposon. To the best of our knowledge, this is the first report of co-infection with chromosomally located bla CTX-M-14 and plasmid-encoding bla CTX-M-15 in pathogenic E. coli. Our findings indicate that resistance genes in clinical isolates can spread through concurrent combinations of chromosomes and plasmids.

13.
J Neuroinflammation ; 17(1): 307, 2020 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-33069239

RESUMO

BACKGROUND: Experimental autoimmune encephalitis (EAE) and virally induced demyelinating disease are two major experimental model systems used to study human multiple sclerosis. Although endothelin-1 level elevation was previously observed in the CNS of mice with EAE and viral demyelinating disease, the potential role of endothelin-1 in the development of these demyelinating diseases is unknown. METHODS AND RESULTS: In this study, the involvement of endothelin-1 in the development and progression of demyelinating diseases was investigated using these two experimental models. Administration of endothelin-1 significantly promoted the progression of both experimental diseases accompanied with elevated inflammatory T cell responses. In contrast, administration of specific endothelin-1 inhibitors (BQ610 and BQ788) significantly inhibited progression of these diseases accompanied with reduced T cell responses to the respective antigens. CONCLUSIONS: These results strongly suggest that the level of endothelin-1 plays an important role in the pathogenesis of immune-mediated CNS demyelinating diseases by promoting immune responses.


Assuntos
Infecções por Cardiovirus/metabolismo , Doenças Desmielinizantes/metabolismo , Endotelina-1/biossíntese , Theilovirus , Animais , Infecções por Cardiovirus/induzido quimicamente , Infecções por Cardiovirus/imunologia , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/imunologia , Endotelina-1/antagonistas & inibidores , Endotelina-1/toxicidade , Feminino , Camundongos , Oligopeptídeos/farmacologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
14.
Bioorg Med Chem Lett ; 30(20): 127472, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32781216

RESUMO

New therapies for treating coronaviruses are urgently needed. A series of 4-anilino-6-aminoquinazoline derivatives were synthesized and evaluated to show high anti-MERS-CoV activities. N4-(3-Chloro-4-fluorophenyl)-N6-(3-methoxybenzyl)quinazoline-4,6-diamine (1) has been identified in a random screen as a hit compound for inhibiting MERS-CoV infection. Throughout optimization process, compound 20 was found to exhibit high inhibitory effect (IC50 = 0.157 µM, SI = 25) with no cytotoxicity and moderate in vivo PK properties.


Assuntos
Compostos de Anilina/farmacologia , Antivirais/farmacologia , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Quinazolinas/farmacologia , Compostos de Anilina/síntese química , Compostos de Anilina/farmacocinética , Compostos de Anilina/toxicidade , Animais , Antivirais/síntese química , Antivirais/farmacocinética , Antivirais/toxicidade , Linhagem Celular , Chlorocebus aethiops , Cricetulus , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Quinazolinas/síntese química , Quinazolinas/farmacocinética , Quinazolinas/toxicidade , Ratos , Relação Estrutura-Atividade
16.
Cells ; 9(8)2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32727036

RESUMO

Theiler's murine encephalomyelitis virus (TMEV) induces immune-mediated inflammatory demyelinating disease in susceptible mice that is similar to human multiple sclerosis (MS). In light of anti-CD20 therapies for MS, the susceptibility of B cells to TMEV infection is particularly important. In our study, direct viral exposure to macrophages and lymphocytes resulted in viral replication and cellular stimulation in the order of DCs, macrophages, B cells, and T cells. Notably, B cells produced viral proteins and expressed elevated levels of CD69, an activation marker. Similarly, the expression of major histocompatibility complex class II and costimulatory molecules in B cells was upregulated. Moreover, TMEV-infected B cells showed elevated levels of antigen-presenting function and antibody production. TMEV infection appeared to polyclonally activate B cells to produce autoantibodies and further T cell stimulation. Thus, the viral infection might potentially affect the outcome of autoimmune diseases, and/or the development of other chronic infections, including the protection and/or pathogenesis of TMEV-induced demyelinating disease.


Assuntos
Autoanticorpos/metabolismo , Linfócitos B/imunologia , Esclerose Múltipla/imunologia , Theilovirus/patogenicidade , Animais , Feminino , Camundongos
17.
J Clin Med ; 9(8)2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32727069

RESUMO

Severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and coronavirus disease 2019 (COVID-19) are emerging zoonotic diseases caused by coronavirus (CoV) infections. The viral RNA-dependent RNA polymerase (RdRp) has been suggested as a valuable target for antiviral therapeutics because the sequence homology of CoV RdRp is highly conserved. We established a cell-based reporter assay for MERS-CoV RdRp activity to test viral polymerase inhibitors. The cell-based reporter system was composed of the bicistronic reporter construct and the MERS-CoV nsp12 plasmid construct. Among the tested nine viral polymerase inhibitors, ribavirin, sofosbuvir, favipiravir, lamivudine, zidovudine, valacyclovir, vidarabine, dasabuvir, and remdesivir, only remdesivir exhibited a dose-dependent inhibition. Meanwhile, the Z-factor and Z'-factor of this assay for screening inhibitors of MERS-CoV RdRp activity were 0.778 and 0.782, respectively. Ribavirin and favipiravir did not inhibit the MERS-CoV RdRp activity, and non-nucleoside HCV RdRp inhibitor, dasabuvir, partially inhibited MERS-CoV RdRp activity. Taken together, the cell-based reporter assay for MERS-CoV RdRp activity confirmed remdesivir as a direct inhibitor of MERS-CoV RdRp in cells. A cell-based MERS-CoV RdRp activity reporter assay is reliable and accurate for screening MERS-CoV RdRp-specific inhibitors. It may provide a valuable platform for developing antiviral drugs for emerging CoV infections.

18.
J Clin Med ; 9(7)2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32674356

RESUMO

Kurarinone is a prenylated flavonone isolated from the roots of Sophora flavescens. Among its known functions, kurarinone has both anti-apoptotic and anti-inflammatory properties. Coronaviruses (CoVs), including HCoV-OC43, SARS-CoV, MERS-CoV, and SARS-CoV-2, are the causative agents of respiratory virus infections that range in severity from the common cold to severe pneumonia. There are currently no effective treatments for coronavirus-associated diseases. In this report, we examined the anti-viral impact of kurarinone against infection with the human coronavirus, HCoV-OC43. We found that kurarinone inhibited HCoV-OC43 infection in human lung fibroblast MRC-5 cells in a dose-dependent manner with an IC50 of 3.458 ± 0.101 µM. Kurarinone inhibited the virus-induced cytopathic effect, as well as extracellular and intracellular viral RNA and viral protein expression. Time-of-addition experiments suggested that kurarinone acted at an early stage of virus infection. Finally, we found that HCoV-OC43 infection increased the autophagic flux in MRC-5 cells; kurarinone inhibited viral replication via its capacity to impair the virus-induced autophagic flux. As such, we suggest that kurarinone may be a useful therapeutic for the treatment of diseases associated with coronavirus infection.

20.
Biomolecules ; 9(11)2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31690059

RESUMO

Stephaniatetrandra and other related species of Menispermaceae are the major sources of the bis-benzylisoquinoline alkaloids tetrandrine (TET), fangchinoline (FAN), and cepharanthine (CEP). Although the pharmacological properties of these compounds include anticancer and anti-inflammatory activities, the antiviral effects of these compounds against human coronavirus (HCoV) remain unclear. Hence, the aims of the current study were to assess the antiviral activities of TET, FAN, and CEP and to elucidate the underlying mechanisms in HCoV-OC43-infected MRC-5 human lung cells. These compounds significantly inhibited virus-induced cell death at the early stage of virus infection. TET, FAN, and CEP treatment dramatically suppressed the replication of HCoV-OC43 as well as inhibited viral S and N protein expression. The virus-induced host response was reduced by compound treatment as compared with the vehicle control. Taken together, these findings demonstrate that TET, FAN, and CEP are potential natural antiviral agents for the prevention and treatment of HCoV-OC43 infection.


Assuntos
Antivirais/farmacologia , Benzilisoquinolinas/farmacologia , Infecções por Coronavirus/virologia , Coronavirus Humano OC43/efeitos dos fármacos , Coronavirus Humano OC43/fisiologia , Extratos Vegetais/farmacologia , Stephania tetrandra/química , Benzilisoquinolinas/química , Linhagem Celular , Infecções por Coronavirus/genética , Infecções por Coronavirus/metabolismo , Coronavirus Humano OC43/genética , Citocinas/genética , Citocinas/metabolismo , Humanos , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...