Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Shock ; 59(2): 256-266, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36427100

RESUMO

ABSTRACT: Dendritic cell (DC)-mediated immune dysfunction is involved in the process of severe hemorrhagic shock that leads to sepsis. Although post-hemorrhagic shock mesenteric lymph (PHSML) induces immune organs injuries and apoptosis, whether PHSML exerts adverse effects on splenic DCs remains unknown. In this study, we established a hemorrhagic shock model (40 ± 2 mm Hg for 60 min) followed by fluid resuscitation with the shed blood and equal Ringer's solution and drained the PHSML after resuscitation. At 3 h after resuscitation, we harvested the splenic tissue to isolate DCs using anti-CD11c immunomagnetic beads and then detected the necrotic and apoptotic rates in splenocytes and splenic DCs. We also detected the levels of TNF-α, IL-10, and IL-12 in the culture supernatants and surface marker expressions of MHC-II, CD80, and CD86 of splenic DCs following LPS stimulation for 24 h. Second, we purified the DCs from splenocytes of normal mice to investigate the effects of PHSML treatment on cytokine production and surface marker expression following LPS stimulation. The results showed that PHSML drainage attenuated LPS-induced cell death of splenocytes and DCs. Meanwhile, PHSML drainage enhanced the DC percentage in splenocytes and increased the TNF-α and IL-12 production by DCs and the expressions of CD80, CD86, and MHCII of DCs treated by LPS. Furthermore, PHSML treatment reduced the productions of TNF-α, IL-10, and IL-12 and the expressions of CD80 and CD86 in normal DCs after treatment with LPS. In summary, the current investigation demonstrated that PHSML inhibited the cytokine production and surface marker expressions of DCs stimulated by LPS, suggesting that PHSML plays an important role in hemorrhagic shock-induced immunosuppression through the impairment of DC function and maturation.


Assuntos
Choque Hemorrágico , Humanos , Choque Hemorrágico/terapia , Interleucina-10/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/farmacologia , Interleucina-12/metabolismo , Células Dendríticas/metabolismo
2.
Inorg Chem ; 62(1): 442-453, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36571809

RESUMO

Photocatalytic degradation of pollutants is an effective environment purification strategy. Metal-organic frameworks (MOFs) have attracted extensive attention in the field of photocatalysis owing to their structural diversity, uniform cavity, and large specific surface area. However, poor electrical conductivity, light absorption, and water stability restrict their development. The tailorable structure of MOFs may effectively overcome these limitations. Herein, three Cu-based MOFs (complexes 1-3) with one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) structures, respectively, were successfully prepared by introducing different uncoordinated ligands and adjusting the ligand/metal salt ratio. Among them, complex 1 with a 1D chain was constructed as a typical J-type aggregation by π-π stacking interactions between adjacent naphthalene rings. This intermolecular aggregation mode enhances strong exciton coupling between conjugated rings, reduces the transition energy, expands the intrinsic light absorption edge, and provides a channel for electron transport, thus improving the charge-separation efficiency. As expected, complex 1 with a 1D chain structure exhibited excellent Fenton-like catalytic activity. The apparent reaction rates were 3.2 and 2.0 times higher than those of 2D and 3D MOFs, respectively.

3.
Apoptosis ; 24(3-4): 290-300, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30684145

RESUMO

Dihydromyricetin (DMY) is a traditional herbal medicine, with a wide range of biological activities. Extreme hyperthermia (HT) can suppress the immune system; thus, protection of the immune system is beneficial in heat-related diseases, including heatstroke. In our study, we revealed the protective effect of DMY against HT-induced apoptosis and analysed the underlying molecular mechanisms. We incubated human myelomonocytic lymphoma U937 cells at 44 °C for 30 min with or without DMY and followed by further incubation for 6 h at 37 °C. Cell viability was determined by the CCK-8 assay. DMY did not cause any cytotoxic effects in U937 cells even at high doses. HT treatment alone induced significant apoptosis, which was detected by DNA fragmentation and Annexin V/PI double staining. Mitochondrial dysfunction was identified by loss of mitochondrial membrane potential (MMP) during heat stimulation. Apoptotic related proteins were involved, truncated Bid and caspase-3 were upregulated, and Mcl-1 and XIAP were downregulated. We also identified the related signalling pathways, such as the MAPK and PI3K/AKT pathways. However, changes in HT were dramatically reversed when the cells were pretreated with DMY before exposure to HT. Overall, MAPKs and PI3K/AKT signalling, mitochondrial dysfunction, and caspase-mediated pathways were involved in the protective effect of DMY against HT-induced apoptosis in U937 cells, which was totally reversed by DMY pretreatment. These findings indicate a new clinical therapeutic strategy for the protection of immune cells during heatstroke.


Assuntos
Apoptose/efeitos dos fármacos , Febre/metabolismo , Flavonóis/farmacologia , Linfoma/tratamento farmacológico , Substâncias Protetoras/farmacologia , Caspases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Humanos , Linfoma/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células U937
4.
J Appl Toxicol ; 38(2): 240-247, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28949029

RESUMO

Fenvalerate (Fen), a synthetic pyrethroid insecticide, is widely used in agricultural, domestic and veterinary applications. Fen induces abnormal cell proliferation and apoptosis, which are linked to its hazardous effects. However, this view is controversial and the underlying molecular mechanisms remain elusive. In the present study, the effects of Fen on cadmium (Cd)-induced apoptosis and the associated molecular mechanisms were investigated in human myeloid leukemia U937 cells. U937 cells were treated with 50 µm cadmium chloride (CdCl2 ) with or without Fen pretreatment at 1-50 µm. Apoptosis was evaluated by externalization of phosphatidylserine on the plasma membrane. The expression levels of apoptosis-related proteins, including Bcl-2 family members were determined by western blot analysis. The results revealed that pretreatment with Fen at 20 µm for 12 hours significantly inhibited Cd-induced apoptosis. Decreased expression of pro-apoptotic Bcl-2 family proteins (Noxa and Bid) and increased expression of anti-apoptotic proteins (Bcl-xL, Mcl-1 and XIAP) were observed after combined treatment with Fen and CdCl2 . Phosphorylation of ERK and AKT was increased, while phosphorylation of JNK was decreased by the combined treatment, compared with CdCl2 treatment alone. In conclusion, Fen decreased apoptotic sensitivity induced by Cd in U937 cells. This effect was associated with activation of ERK and AKT, suppression of JNK and changes in expression of Bcl-2 family proteins and XIAP. The present findings suggest a potential influence of Fen on Cd toxicity via suppression of apoptosis. Fen decreased apoptotic sensitivity induced by Cd, and thus it may contribute carcinogenic risk and influence on cancer therapy.


Assuntos
Apoptose/efeitos dos fármacos , Cádmio/toxicidade , Poluentes Ambientais/toxicidade , Substâncias Perigosas/toxicidade , Nitrilas/toxicidade , Piretrinas/toxicidade , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/patologia , Sobrevivência Celular/efeitos dos fármacos , Interações Medicamentosas , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...