Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.360
Filtrar
1.
Angew Chem Int Ed Engl ; : e202409763, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954763

RESUMO

Developing non-platinum group metal catalysts for the sluggish hydrogen oxidation reaction (HOR) is critical for alkaline fuel cells. To date, Ni-based materials are the most promising candidates but still suffer from insufficient performance. Herein, we report an unconventional hcp/fcc Ni (u-hcp/fcc Ni) heteronanocrystal with multiple epitaxial hcp/fcc heterointerfaces and coherent twin boundaries, generating rugged surfaces with plenty of asymmetric convex sites. Systematic analyses discover that such convex sites enable the adsorption of *H in unusual bridge positions with weakened binding energy, circumventing the over-strong *H adsorption on traditional hollow positions, and simultaneously stabilizing interfacial *H2O. It thus synergistically optimizes the HOR thermodynamic process as well as reduces the kinetic barrier of the rate-determining Volmer step. Consequently, the developed u-hcp/fcc Ni exhibits the top-rank alkaline HOR activity with a mass activity of 40.6 mA mgNi-1 (6.3 times higher than fcc Ni control) together with superior stability and high CO-tolerance. These results provide a paradigm for designing high-performance catalysts by shifting the adsorption state of intermediates through configuring surface sites.

2.
Open Med (Wars) ; 19(1): 20240996, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006953

RESUMO

Objective: The aim of this study was to investigate the role of the Hounsfield unit value of chest CT non-contrast enhanced scan in evaluating the severity of anemia in HIV-infected patients. Methods: Patients with HIV infection combined with anemia admitted to the Kunming Third People's Hospital were retrospectively collected and divided into mild anemia, moderate anemia, and severe anemia groups by peripheral hemoglobin (HB) content and calculated the ratio of ventricular septum density (VSD) to left ventricular density (LVD) and VSD to right ventricular density (RVD); then, the above patients were divided into the critical value group and the non-critical value group according to HB and compared the differences of LVD, RVD, VSD/LVD, and VSD/RVD in the two groups of patients. Results: A total of 126 patients were included, with a mean age of 47.9 ± 11.1 years; 43 cases were in the mild anemia group, 59 cases were in the moderate anemia group, and 24 cases were in the severe anemia group; the differences in LVD, RVD, VSD/LVD, and VSD/RVD were significant in the three groups; VSD/LVD was an independent predictor for the diagnosis of anemia critical value in the non-critical value group vs critical value group by multifactorial binary logistic regression analysis, and the ROC was plotted using VSD/LVD with an area under the curve of 0.731. Conclusions: The measurement of cardiac cavity density and ventricular septal density under CT plain film scan has a high accuracy in evaluating the severity of anemia in patients with HIV infection and can quickly determine the severity of HIV infection in the early stage and treat it as soon as possible.

3.
Angew Chem Int Ed Engl ; : e202410900, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010737

RESUMO

MnO2 is commonly used as the cathode material for aqueous zinc-ion batteries (AZIBs). The strong Coulombic interaction between Zn ions and the MnO2 lattice causes significant lattice distortion and, combined with the Jahn-Teller effect, results in Mn2+ dissolution and structural collapse. While proton intercalation can reduce lattice distortion, it changes the electrolyte pH, producing chemically inert byproducts. These issues greatly affect the reversibility of Zn2+ intercalation/extraction, leading to significant capacity degradation of MnO2. Herein, we propose a novel method to enhance the cycling stability of δ-MnO2 through selenium doping (Se-MnO2). Our work indicates that varying the selenium doping content can regulate the intercalation ratio of H+ in MnO2, thereby suppressing the formation of ZnMn2O4 by-products. Se doping mitigates the lattice strain of MnO2 during Zn2+ intercalation/deintercalation by reducing Mn-O octahedral distortion, modifying Mn-O bond length upon Zn2+ insertion, and alleviating Mn dissolution caused by the Jahn-Teller effect. The optimized Se-MnO2 (Se concentration of 0.8 at.%) deposited on carbon nanotube demonstrates a notable capacity of 386 mAh g-1 at 0.1 A g-1, with exceptional long-term cycle stability, retaining 102 mAh g-1 capacity after 5000 cycles at 3.0 A g-1.

4.
ACS Omega ; 9(26): 28666-28675, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38973902

RESUMO

Skeletal muscle ischemia-reperfusion (IR) injury is a prevalent type of muscle injury caused by events, such as trauma, arterial embolism, and primary thrombosis. The development of an IR injury is associated with oxidative stress and an excessive inflammatory response. Nanozymes, which have exceptional free radical scavenging activities, have gained significant attention for treating oxidative stress. This study demonstrates that carbon dot (C-dot) nanozymes possess superoxide dismutase (SOD)-like activity and can act as free radical scavengers. The carbon dot nanozymes are presented to mitigate inflammation by downregulating the iNOS/COX-2 pathway and scavenging reactive oxygen-nitrogen species to reduce oxidative stress, thereby suppressing inflammation. In the IR injury of skeletal muscle mice, we demonstrate that C-dots can effectively reduce inflammatory cytokines and tissue edema in skeletal muscle following IR injury in the limb. These findings suggest that C-dots have potential as a therapeutic approach for IR injury of skeletal muscle with negligible systemic toxicity. This offers a promising strategy for clinical intervention.

5.
Food Funct ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989659

RESUMO

Methionine is an important sulfur-containing amino acid. Health effects of both methionine restriction (MR) and methionine supplementation (MS) have been studied. This study aimed to investigate the impact of a high-methionine diet (HMD) (1.64% methionine) on both the gut and liver functions in mice through multi-omic analyses. Hepatic steatosis and compromised gut barrier function were observed in mice fed the HMD. RNA-sequencing (RNA-seq) analysis of liver gene expression patterns revealed the upregulation of lipid synthesis and degradation pathways, cholesterol metabolism and inflammation-related nucleotide-binding oligomerization domain (NOD)-like receptor signaling pathway. Metagenomic sequencing of cecal content demonstrated a shift in gut microbial composition with an increased abundance of opportunistic pathogens and gut microbial functions with up-regulated lipopolysaccharide (LPS) biosynthesis in mice fed HMD. Metabolomic study of cecal content showed an altered gut lipid profile and the level of bioactive lipids, including docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), palmitoylethanolamide (PEA), linoleoyl ethanolamide (LEA) and arachidonoyl ethanolamide (AEA), that carry anti-inflammatory effects significantly reduced in the gut of mice fed the HMD. Correlation analysis demonstrated that gut microbiota was highly associated with liver and gut functions and gut bioactive lipid content. In conclusion, this study suggested that the HMD exerted negative impacts on both the gut and liver, and an adequate amount of methionine intake should be carefully determined to ensure normal physiological function without causing adverse effects.

6.
Nat Commun ; 15(1): 6102, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030211

RESUMO

Visible-light photocatalysis has evolved as a powerful technique to enable controllable radical reactions. Exploring unique photocatalytic mode for obtaining new chemoselectivity and product diversity is of great significance. Herein, we present a photo-induced chemoselective 1,2-diheteroarylation of unactivated alkenes utilizing halopyridines and quinolines. The ring-fused azaarenes serve as not only substrate, but also potential precursors for halogen-atom abstraction for pyridyl radical generation in this photocatalysis. As a complement to metal catalysis, this photo-induced radical process with mild and redox neutral conditions assembles two different heteroaryl groups into alkenes regioselectively and contribute to broad substrates scope. The obtained products containing aza-arene units permit various further diversifications, demonstrating the synthetic utility of this protocol. We anticipate that this protocol will trigger the further advancement of photo-induced alkyl/aryl halides activation.

7.
Biotechnol Adv ; : 108416, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39033835

RESUMO

Glycosaminoglycans (GAGs) are extensively utilized in clinical, cosmetic, and healthcare field, as well as in the treatment of thrombosis, osteoarthritis, rheumatism, and cancer. The biological production of GAGs is a strategy that has garnered significant attention due to its numerous advantages over traditional preparation methods. In this review, we embark on a journey to decode the intricate molecular symphony that orchestrates the biosynthesis of glycosaminoglycans. By unraveling the complex interplay of related enzymes and thorough excavation of the intricate metabolic cascades involved, GAGs chain aggregation and transportation, which efficiently and controllably modulate GAGs sulfation patterns involved in biosynthetic pathway, we endeavor to offer a thorough comprehension of how these remarkable GAGs are intricately assembled and pushes the boundaries of our understanding in GAGs biosynthesis.

8.
Phys Chem Chem Phys ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041218

RESUMO

The highly localized Fe d orbital in ion phthalocyanine (FePc)-based molecular catalysts significantly hinders their electrocatalytic nitrogen reduction reaction (eNRR) performance. Herein, we theoretically designed a series of FePc-based molecules with adjacent metal phthalocyanine sites to form an asymmetric delocalized electronic structure on Fe centers, promoting the catalytic activity and lowering the overpotential of the eNRR, as well as suppressing the hydrogen evolution reaction (HER) side reaction.

9.
Public Health Nurs ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946470

RESUMO

OBJECTIVE: Social residents become increasingly concerned about Alzheimer's dementia (AD) as a global public health crisis. China's AD population is the largest and growing fastest. However, no study has examined Chinese social residents' knowledge and attitudes concerning Alzheimer's illness. This study examined Chinese social residents' AD knowledge and attitudes using the Alzheimer's Disease Knowledge Scale (ADKS) and dementia attitudes scale (DAS). DESIGN: Cross-sectional survey. SAMPLE: 338 social residents over 18 years old from various Chinese regions were recruited using convenient sampling. MEASUREMENTS: The ADKS (Chinese) and the Dementia Attitude Scale (Chinese) were used to assess their knowledge and attitude regarding AD. RESULTS: A total of 328 respondents (97.04%) completed the survey. ADKS = 19.44 ± 3.33; DAS = 86.98 ± 12.7. Age and education levels can have a substantial impact on ADKS scores, and education levels can have a substantial impact on DAS scores. CONCLUSIONS: Low levels of awareness and acceptance of AD exist among Chinese residents. The results indicate that China must immediately implement comprehensive AD education for its social residents.

10.
Medicine (Baltimore) ; 103(27): e38812, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968470

RESUMO

Acquired undescended testes were once considered a sporadic disease. In recent years, reports suggest that they are not uncommon, with an incidence rate about 3 times that of congenital undescended testes. The etiology of acquired undescended testes remains inconclusive, clinical diagnostic standards are unclear, and treatment approaches are still controversial. There is ongoing debate about the mechanism of testicular ascent. The prevailing view is that acquired undescended testes occur due to the partial absorption of the gubernaculum, which forms part of the parietal peritoneum. The residual gubernacular fibers continuously pull on the spermatic cord, preventing the spermatic cord from elongating proportionately to somatic growth, leading to a re-ascent of the testis. Acquired undescended testes may increase the risk of testicular cancer, but this is still debated. The preferred treatment method is also controversial. However, surgical fixation has an immediate effect; no studies have proven that early surgery improves fertility in patients. The etiology of acquired undescended testes is closely related to the continuous pull of the residual gubernacular fibers on the spermatic cord, which prevents the cord from extending proportionately to body growth. There are no clear diagnostic standards for acquired undescended testes yet, and spontaneous descent is possible, so testicular fixation surgery may not be the preferred treatment method.


Assuntos
Criptorquidismo , Humanos , Masculino , Criptorquidismo/terapia , Criptorquidismo/diagnóstico , Criptorquidismo/etiologia , Testículo , Orquidopexia
11.
Small ; : e2402616, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39031846

RESUMO

Hard carbon materials have shown promising potential for sodium-ion storage due to accommodating larger sodium ions. However, as for lithium-ion storage, the challenge lies in tuning the high lithiation plateau capacities, which impacts the overall energy density. Here, hard carbon microspheres (HCM) are prepared by tailoring the cross-linked polysaccharide, establishing a comprehensive methodology to obtain high-performance lithium-ion batteries (LIBs) with long plateau capacities. The "adsorption-intercalation mechanism" for lithium storage is revealed combining in situ Raman characterization and ex situ nuclear magnetic resonance spectroscopy. The optimized HCM possesses reduced defect content, enriched graphitic microcrystalline, and low specific surface area, which is beneficial for fast lithium storage. Therefore, HCM demonstrates a high reversible capacity of 537 mAh g-1 with a significant low-voltage plateau capacity ratio of 55%, high initial Coulombic efficiency, and outstanding rate performance (152 mAh g-1 at 10 A g-1). Moreover, the full cell (HCM||LiCoO2) delivers outstanding fast-charging capability (4 min charge to 80% at 10 C) and impressive energy density of 393 Wh kg-1. Additionally, 80% reversible capacity can be delivered under -40 °C with competitive cycling stability. This work provides in-depth insights into the rational design of hard carbon structures with extended low-voltage plateau capacity for high energy LIBs.

12.
Nat Commun ; 15(1): 5987, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013913

RESUMO

Ethylene regulates plant growth, development, and stress adaptation. However, the early signaling events following ethylene perception, particularly in the regulation of ethylene receptor/CTRs (CONSTITUTIVE TRIPLE RESPONSE) complex, remains less understood. Here, utilizing the rapid phospho-shift of rice OsCTR2 in response to ethylene as a sensitive readout for signal activation, we revealed that MHZ3, previously identified as a stabilizer of ETHYLENE INSENSITIVE 2 (OsEIN2), is crucial for maintaining OsCTR2 phosphorylation. Genetically, both functional MHZ3 and ethylene receptors prove essential for OsCTR2 phosphorylation. MHZ3 physically interacts with both subfamily I and II ethylene receptors, e.g., OsERS2 and OsETR2 respectively, stabilizing their association with OsCTR2 and thereby maintaining OsCTR2 activity. Ethylene treatment disrupts the interactions within the protein complex MHZ3/receptors/OsCTR2, reducing OsCTR2 phosphorylation and initiating downstream signaling. Our study unveils the dual role of MHZ3 in fine-tuning ethylene signaling activation, providing insights into the initial stages of the ethylene signaling cascade.


Assuntos
Etilenos , Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Receptores de Superfície Celular , Transdução de Sinais , Oryza/metabolismo , Oryza/genética , Etilenos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fosforilação , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética , Plantas Geneticamente Modificadas , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética
13.
Eur J Pharmacol ; : 176832, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39038639

RESUMO

The contractile function of vascular smooth muscle cells (VSMCs) typically undergoes significant changes with advancing age, leading to severe vascular aging-related diseases. The precise role and mechanism of stromal interaction molecule-1 (STIM1) in age-mediated Ca2+ signaling and vasocontraction remain unclear. The connection between STIM1 and age-related vascular dysfunction was investigated using a multi-myograph system, immunohistochemical analysis, protein blotting, and SA-ß-gal staining. Results showed that vasoconstrictor responses in the thoracic aorta, intrarenal artery, and coronary artery decreased with age. STIM1 knockdown in the intrarenal and coronary arteries reduced vascular tone in young mice, while no change was observed in the thoracic aorta. A significant reduction in vascular tone occurred in the STIM1 knockout group with nifedipine. In the thoracic aorta, vasoconstriction significantly decreased with age following the use of nifedipine and thapsigargin and almost disappeared after STIM1 knockdown. The proportion of senescent VSMCs increased significantly in aged mice and further increased in sm-STIM1 KO aged mice. Moreover, the expression of senescence markers p21, p16, and IL-6 significantly increased with age, with p21 expression further increased in the STIM1 knockdown aged group, but not p16 or IL-6. These findings indicate that different arteries exhibit distinct organ-specific features and that STIM1 downregulation may contribute to age-related vasoconstrictive dysfunction through activation of the p21 pathway.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38864771

RESUMO

Pulmonary hypertension (PH) is an incurable disease characterized by pulmonary vascular remodeling. Endothelial injury and inflammation are the key triggers of the disease initiation. Recent findings suggest that STING (stimulator of interferon genes) activation plays a critical role in the endothelial dysfunction and interferon signaling. Here, we investigated the involvement of STING in the pathogenesis of PH. PH patients and rodent PH model samples, Sugen5416/hypoxia (SuHx) PH model, and pulmonary artery endothelial cells (PAECs) were used to evaluate the hypothesis. We found that the cyclic GMP-AMP (cGAS)-STING signaling pathway was activated in the lung tissues from rodent PH models and PH patients, and in the TNF-α induced PAECs in vitro. Specifically, STING expression was significantly elevated in the endothelial cell in PH disease settings. In SuHx mouse model, genetic knockout or pharmacological inhibition of STING prevented the progression of PH. Functionally, knockdown of STING reduced the proliferation and migration in PAECs. Mechanistically, STING transcriptional regulates its binding partner F2RL3 through STING-NF-κB axis, which activated the interferon signaling and repressed the BMPR2 signaling both in vitro and in vivo. Further analysis revealed that F2RL3 expression was increased in PH settings and identified negative feedback regulation of F2RL3/BMPR2 signaling. Accordingly, a positive correlation of expression levels between STING and F2RL3/interferon-stimulated genes (ISGs) was observed in vivo. Our findings suggest that STING activation in PAECs plays a critical role in the pathobiology of PH. Targeting STING may be a promising therapeutic strategy for preventing the development of PH.

15.
Pharmacol Rev ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866561

RESUMO

Cardiometabolic diseases (CMDs) are major contributors to global mortality, emphasizing the critical need for novel therapeutic interventions. Hydrogen sulfide (H2S) has garnered enormous attention as a significant gasotransmitter with various physiological, pathophysiological, and pharmacological impacts within mammalian cardiometabolic systems. In addition to its roles in attenuating oxidative stress and inflammatory response, burgeoning research emphasizes the significance of H2S in regulating proteins via persulfidation, a well-known modification intricately associated with the pathogenesis of CMDs This review seeks to investigate recent updates on the physiological actions of endogenous H2S and the pharmacological roles of various H2S donors in addressing diverse aspects of CMDs across cellular, animal, and clinical studies. Of note, advanced methodologies including multi-omics, intestinal microflora analysis, organoid and single-cell sequencing techniques are gaining traction due to their ability to offer comprehensive insights into biomedical research. These emerging approaches hold promise in characterizing the pharmacological roles of H2S in health and diseases. We will critically assesse the current literatures to clarify the roles of H2S in diseases while also delineating the opportunities and challenges they present in H2S-based pharmacotherapy for CMDs. Significance Statement The comprehensive review covers recent developments in H2S biology and pharmacology in CMDs. Endogenous H2S and its donors show great promise for the management of CMDs by regulating numerous proteins and signaling pathways. The emergence of new technologies will considerably advance the pharmacological research and clinical translation of H2S.

16.
Gut Microbes ; 16(1): 2370634, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38935546

RESUMO

Diet is a key player in gut-liver axis. However, the effect of different dietary patterns on gut microbiota and liver functions remains unclear. Here, we used rodent standard chow and purified diet to mimic two common human dietary patterns: grain and plant-based diet and refined-food-based diet, respectively and explored their impacts on gut microbiota and liver. Gut microbiota experienced a great shift with notable increase in Desulfovibrio, gut bile acid (BA) levels elevated significantly, and liver inflammation was observed in mice fed with the purified diet. Liver inflammation and elevated gut BA levels also occurred in mice fed with the chow diet after receiving Desulfovibrio desulfuricans ATCC 29,577 (DSV). Restriction of sulfur-containing amino acids (SAAs) prevented liver injury mainly through higher hepatic antioxidant and detoxifying ability and reversed the elevated BA levels due to excess Desulfovibrio. Ex vivo fermentation of human fecal microbiota with primary BAs demonstrated that DSV enhanced production of secondary BAs. Higher concentration of both primary and secondary BAs were found in the gut of germ-free mice after receiving DSV. In conclusion, Restriction of SAAs in diet may become an effective dietary intervention to prevent liver injury associated with excess Desulfovibrio in the gut.


Assuntos
Desulfovibrio , Microbioma Gastrointestinal , Fígado , Camundongos Endogâmicos C57BL , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Fígado/metabolismo , Humanos , Desulfovibrio/metabolismo , Masculino , Ácidos e Sais Biliares/metabolismo , Aminoácidos/metabolismo , Dieta , Fezes/microbiologia , Fezes/química , Enxofre/metabolismo , Aminoácidos Sulfúricos/metabolismo
17.
Plant Cell ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38943676

RESUMO

The cell wall shapes plant cell morphogenesis and affects the plasticity of organ growth. However, the way in which cell wall establishment is regulated by ethylene remains largely elusive. Here, by analyzing cell wall patterns, cell wall composition and gene expression in rice (Oryza sativa, L.) roots, we found that ethylene induces cell wall thickening and the expression of cell wall synthesis-related genes, including CELLULOSE SYNTHASE-LIKE C1, 2, 7, 9, 10 (OsCSLC1, 2, 7, 9, 10) and CELLULOSE SYNTHASE A3, 4, 7, 9 (OsCESA3, 4, 7, 9). Overexpression and mutant analyses revealed that OsCSLC2 and its homologs function in ethylene-mediated induction of xyloglucan biosynthesis mainly in the cell wall of root epidermal cells. Moreover, OsCESA-catalyzed cellulose deposition in the cell wall was enhanced by ethylene. OsCSLC-mediated xyloglucan biosynthesis likely plays an important role in restricting cell wall extension and cell elongation during the ethylene response in rice roots. Genetically, OsCSLC2 acts downstream of ETHYLENE-INSENSITIVE3-LIKE1 (OsEIL1)-mediated ethylene signaling, and OsCSLC1, 2, 7, 9 are directly activated by OsEIL1. Furthermore, the auxin signaling pathway is synergistically involved in these regulatory processes. These findings link plant hormone signaling with cell wall establishment, broadening our understanding of root growth plasticity in rice and other crops.

18.
J Hazard Mater ; 476: 135015, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38943886

RESUMO

The rapid proliferation of the halophilic pathogen Vibrio parahaemolyticus poses a severe health hazard to halobios and significantly impedes intensive mariculture. This study aimed to evaluate the potential application of gliding arc discharge plasma (GADP) to control the infection of Vibrio parahaemolyticus in mariculture. This study investigated the inactivation ability of GADP against Vibrio parahaemolyticus in artificial seawater (ASW), changes in the water quality of GADP-treated ASW, and possible inactivation mechanisms of GADP against Vibrio parahaemolyticus in ASW. The results indicate that GADP effectively inactivated Vibrio parahaemolyticus in ASW. As the volume of ASW increased, the time required for GADP sterilization also increased. However, the complete sterilization of 5000 mL of ASW containing Vibrio parahaemolyticus of approximately 1.0 × 104 CFU/mL was achieved within 20 min. Water quality tests of the GADP-treated ASW demonstrated that there were no significant changes in salinity or temperature when Vibrio parahaemolyticus (1.0 ×104 CFU/mL) was completely inactivated. In contrast to the acidification observed in plasma-activated water (PAW) in most studies, the pH of ASW did not decrease after treatment with GADP. The H2O2 concentration in the GADP-treated ASW decreased after post-treatment. The NO2-concentration in the GADP-treated ASW remained unchanged after post-treatment. Further analysis revealed that GADP induced oxidative stress in Vibrio parahaemolyticus, which increased cell membrane permeability and intracellular ROS levels of Vibrio parahaemolyticus. This study provides a viable solution for infection with the halophilic pathogen Vibrio parahaemolyticus and demonstrates the potential of GADP in mariculture.

19.
J Agric Food Chem ; 72(27): 15265-15275, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38918075

RESUMO

Probiotics can regulate gut microbiota and protect against acute alcohol-induced liver injury through the gut-liver axis. However, efficacy is strain-dependent, and their mechanism remains unclear. This study investigated the effect of lactic acid bacteria (LAB), including Lacticaseibacillus paracasei E10 (E10), Lactiplantibacillus plantarum M (M), Lacticaseibacillus rhamnosus LGG (LGG), Lacticaseibacillus paracasei JN-1 (JN-1), and Lacticaseibacillus paracasei JN-8 (JN-8), on the prevention of acute alcoholic liver injury in mice. We found that LAB pretreatment reduced serum alanine transaminase (ALT) and aspartate transaminase (AST) and reduced hepatic total cholesterol (TC) and triglyceride (TG). JN-8 pretreatment exhibited superior efficacy in improving hepatic antioxidation. LGG and JN-8 pretreatment significantly attenuated hepatic and colonic inflammation by decreasing the expression of interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) and increasing the expression of interleukin 10 (IL-10). JN-1 and JN-8 pretreatments have better preventive effects than other LAB pretreatment on intestinal barrier dysfunction. In addition, the LAB pretreatment improved gut microbial dysbiosis and bile acid (BA) metabolic abnormality. All of the strains were confirmed to have bile salt deconjugation capacities in vitro, where M and JN-8 displayed higher activities. This study provides new insights into the prevention and mechanism of LAB strains in preventing acute alcoholic liver injury.


Assuntos
Ácidos e Sais Biliares , Microbioma Gastrointestinal , Lactobacillales , Fígado , Camundongos Endogâmicos C57BL , Probióticos , Animais , Camundongos , Probióticos/administração & dosagem , Fígado/metabolismo , Masculino , Humanos , Ácidos e Sais Biliares/metabolismo , Lactobacillales/metabolismo , Hepatopatias Alcoólicas/prevenção & controle , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/microbiologia , Aspartato Aminotransferases/metabolismo , Aspartato Aminotransferases/sangue , Alanina Transaminase/metabolismo , Alanina Transaminase/sangue , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Interleucina-10/genética , Interleucina-10/metabolismo , Etanol/efeitos adversos
20.
Food Chem ; 457: 140186, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38924911

RESUMO

Qu-aroma is of great significance for evaluation the quality of Daqu starter. This study aimed to decode the Qu-aroma of medium-temperature Daqu (MT-Daqu) via "top-down" and "bottom-up" approaches. Firstly, 52 aroma descriptors were defined to describe the MT-Daqu aroma by quantitative descriptive analysis. Secondly, 193 volatile organic compounds (VOCs) were identified from 42 MT-Daqu samples by HS-SPME-GC-MS, and 43 dominant VOCs were screened out by frequence of occurrence or abundance. By Thin Film (TF)-SPME-GC-O-MS, 27 odors and 90 VOCs were detected in MT-Daqu mixture, and 14 odor-active VOCs were screened out by odor intensity. Thirdly, a five-level MT-Daqu aroma wheel was constructed by matching 52 aroma descriptors and 37 aroma-active VOCs. Finally, Qu-aroma of MT-Daqu was reconstructed with 37 aroma-active VOCs and evaluated by omission experiments. Hereinto, 26 key aroma-active VOCs were determined by OAV value ≥1, including isovaleric acid, 1-hexanol, isovaleraldehyde, 2-octanone, trimethylpyrazine, γ-nonalactone, 4-vinylguaiacol, etc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA