Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(7): e28440, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38689964

RESUMO

Introduction: Mitochondrial fission process 1 (MTFP1) is an inner mitochondrial membrane (IMM) protein implicated in the development and progression of various tumors, particularly lung squamous cell carcinoma (LUSC). This study aims to provide a more theoretical basis for the treatment of LUSC. Methods: Through bioinformatics analysis, MTFP1 was identified as a novel target gene of HIF1A. MTFP1 expression in LUSC was examined using The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and Proteomics Data Commons (PDC) databases. The Kaplan-Meier plotter (KM plotter) database was utilized to evaluate its correlation with patient survival. Western blot and chromatin immunoprecipitation (ChIP) assays were employed to confirm the regulatory relationship between MTFP1 and HIF1A. Additionally, cell proliferation, colony formation, and migration assays were conducted to investigate the mechanism by which MTFP1 enhances LUSC cell proliferation and metastasis. Results: Our findings revealed that MTFP1 overexpression correlated with poor prognosis in LUSC patients(P < 0.05). Moreover, MTFP1 was closely associated with hypoxia and glycolysis in LUSC (R = 0.203; P < 0.001, R = 0.391; P < 0.001). HIF1A was identified as a positive regulator of MTFP1. Functional enrichment analysis demonstrated that MTFP1 played a role in controlling LUSC cell proliferation. Cell proliferation, colony formation, and migration assays indicated that MTFP1 promoted LUSC cell proliferation and metastasis by activating the glycolytic pathway (P < 0.05). Conclusions: This study establishes MTFP1 as a novel HIF1A target gene that promotes LUSC growth by activating the glycolytic pathway. Investigating MTFP1 may contribute to the development of effective therapies for LUSC patients, particularly those lacking targeted oncogene therapies.

2.
Cell Death Dis ; 15(5): 332, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740744

RESUMO

Ovarian cancer (OV) poses a significant challenge in clinical settings due to its difficulty in early diagnosis and treatment resistance. FOXP4, belonging to the FOXP subfamily, plays a pivotal role in various biological processes including cancer, cell cycle regulation, and embryonic development. However, the specific role and importance of FOXP4 in OV have remained unclear. Our research showed that FOXP4 is highly expressed in OV tissues, with its elevated levels correlating with poor prognosis. We further explored FOXP4's function through RNA sequencing and functional analysis in FOXP4-deficient cells, revealing its critical role in activating the Wnt signaling pathway. This activation exacerbates the malignant phenotype in OV. Mechanistically, FOXP4 directly induces the expression of protein tyrosine kinase 7 (PTK7), a Wnt-binding receptor tyrosine pseudokinase, which causes abnormal activation of the Wnt signaling pathway. Disrupting the FOXP4-Wnt feedback loop by inactivating the Wnt signaling pathway or reducing FOXP4 expression resulted in the reduction of the malignant phenotype of OV cells, while restoring PTK7 expression reversed this effect. In conclusion, our findings underscore the significance of the FOXP4-induced Wnt pathway activation in OV, suggesting the therapeutic potential of targeting this pathway in OV treatment.


Assuntos
Fatores de Transcrição Forkhead , Neoplasias Ovarianas , Receptores Proteína Tirosina Quinases , Via de Sinalização Wnt , Humanos , Feminino , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/genética , Linhagem Celular Tumoral , Animais , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , beta Catenina/metabolismo , Regulação Neoplásica da Expressão Gênica , Camundongos , Camundongos Nus , Proliferação de Células
3.
Cell Signal ; 119: 111180, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38642782

RESUMO

CXXC5, a zinc-finger protein, is known for its role in epigenetic regulation via binding to unmethylated CpG islands in gene promoters. As a transcription factor and epigenetic regulator, CXXC5 modulates various signaling processes and acts as a key coordinator. Altered expression or activity of CXXC5 has been linked to various pathological conditions, including tumorigenesis. Despite its known role in cancer, CXXC5's function and mechanism in ovarian cancer are unclear. We analyzed multiple public databases and found that CXXC5 is highly expressed in ovarian cancer, with high expression correlating with poor patient prognosis. We show that CXXC5 expression is regulated by oxygen concentration and is a direct target of HIF1A. CXXC5 is critical for maintaining the proliferative potential of ovarian cancer cells, with knockdown decreasing and overexpression increasing cell proliferation. Loss of CXXC5 led to inactivation of multiple inflammatory signaling pathways, while overexpression activated these pathways. Through in vitro and in vivo experiments, we confirmed ZNF143 and EGR1 as downstream transcription factors of CXXC5, mediating its proliferative potential in ovarian cancer. Our findings suggest that the CXXC5-ZNF143/EGR1 axis forms a network driving ovarian cell proliferation and tumorigenesis, and highlight CXXC5 as a potential therapeutic target for ovarian cancer treatment.


Assuntos
Proliferação de Células , Proteínas de Ligação a DNA , Proteína 1 de Resposta de Crescimento Precoce , Regulação Neoplásica da Expressão Gênica , Inflamação , Neoplasias Ovarianas , Transativadores , Ativação Transcricional , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Linhagem Celular Tumoral , Transativadores/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Animais , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Camundongos Nus , Transdução de Sinais , Camundongos
4.
Anticancer Agents Med Chem ; 24(6): 400-411, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38192142

RESUMO

BACKGROUND: Efficient targeted molecular therapeutics are needed for the treatment of triple-negative breast cancer (TNBC), a highly invasive and difficult-to-treat form of breast cancer associated with a poor prognosis. OBJECTIVES: This study aims to evaluate the potential of selective CDK4/6 inhibitors as a therapeutic option for TNBC by impairing the cell cycle G1 phase through the inhibition of retinoblastoma protein (Rb) phosphorylation. METHODS: In this study, we synthesized a compound called JHD205, derived from the chemical structure of Abemaciclib, and examined its inhibitory effects on the malignant characteristics of TNBC cells. RESULTS: Our results demonstrated that JHD205 exhibited superior tumor growth inhibition compared to Abemaciclib in breast cancer xenograft chicken embryo models. Western blot analysis revealed that JHD205 could dosedependently degrade CDK4 and CDK6 while also causing abnormal changes in other proteins associated with CDK4/6, such as p-Rb, Rb, and E2F1. Moreover, JHD205 induced apoptosis and DNA damage and inhibited DNA repair by upregulating Caspase3 and p-H2AX protein levels. CONCLUSION: Collectively, our findings suggest that JHD205 holds promise as a potential treatment for breast carcinoma.


Assuntos
Aminopiridinas , Antineoplásicos , Apoptose , Benzimidazóis , Proliferação de Células , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Humanos , Benzimidazóis/farmacologia , Benzimidazóis/química , Benzimidazóis/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Aminopiridinas/farmacologia , Aminopiridinas/química , Aminopiridinas/síntese química , Proliferação de Células/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Estrutura Molecular , Feminino , Relação Estrutura-Atividade , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Embrião de Galinha , Células Tumorais Cultivadas
5.
Cell Death Dis ; 15(1): 33, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212299

RESUMO

Endoplasmic reticulum (ER) stress induces the unfolded protein response (UPR), and prolonged ER stress leads to cell apoptosis. Despite increasing research in this area, the underlying molecular mechanisms remain unclear. Here, we discover that ER stress upregulates the UPR signaling pathway while downregulating E2F target gene expression and inhibiting the G2/M phase transition. Prolonged ER stress decreases the mRNA levels of E2F2, which specifically regulates the expression of F-Box Protein 5(FBXO5), an F-box protein that functions as an inhibitor of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase complex. Depletion of FBXO5 results in increased ER stress-induced apoptosis and decreased expression of proteins related to PERK/IRE1α/ATF6 signaling. Overexpression of FBXO5 wild-type (not its ΔF-box mutant) alleviates apoptosis and the expression of the C/EBP Homologous Protein (CHOP)/ATF. Mechanistically, we find that FBXO5 directly binds to and promotes the ubiquitin-dependent degradation of RNF183, which acts as a ubiquitin E3 ligase in regulating ER stress-induced apoptosis. Reversal of the apoptosis defects caused by FBXO5 deficiency in colorectal cancer cells can be achieved by knocking down RNF183 in FBXO5-deficient cells. Functionally, we observed significant upregulation of FBXO5 in colon cancer tissues, and its silencing suppresses tumor occurrence in vivo. Therefore, our study highlights the critical role of the FBXO5/RNF183 axis in ER stress regulation and identifies a potential therapeutic target for colon cancer treatment.


Assuntos
Neoplasias do Colo , Proteínas F-Box , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Endorribonucleases/metabolismo , Estresse do Retículo Endoplasmático/genética , Resposta a Proteínas não Dobradas , Ubiquitina/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Neoplasias do Colo/genética , Apoptose/genética , Proteínas de Ciclo Celular/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
6.
Mol Cell Endocrinol ; 582: 112127, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109990

RESUMO

The precise involvement and mechanistic role of the signal peptide-CUB-EGF-like domain-containing protein 3 (SCUBE3) in ovarian cancer (OV) remain poorly understood. Here, leveraging comprehensive data from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, we unveil the selective overexpression of SCUBE3 in ovarian cancer tissues and cells. Intriguingly, elevated SCUBE3 expression levels correlate with an unfavorable prognosis in patients. Through meticulous manipulation of SCUBE3 expression, we elucidate its consequential impact on in vitro proliferation and invasion of ovarian cancer cells, as well as in vivo tumor growth in mice. Our multifaceted investigations, encompassing luciferase reporter assays, chromatin immunoprecipitation (ChIP) experiments, and mining of public databases, successfully identify SCUBE3 as a direct downstream target gene of TCF4-a pivotal positive regulator within the ß-catenin/TCF4 complex. Furthermore, utilizing a recessive mutant mouse line (kta41) harboring a functionally impaired point mutation at position 882 in the SCUBE3 gene, we uncover SCUBE3's involvement in the intricate regulation of angiogenesis and epithelial-mesenchymal transition (EMT). Strikingly, Spearman correlation coefficient analysis unveils a close association between SCUBE3 and HIF1A in OV, with SCUBE3 exerting tight control over HIF1A mRNA expression. Moreover, functional inhibition of HIF1A significantly impedes the pro-proliferative and invasive capabilities of SCUBE3-overexpressing ovarian cancer cells. Collectively, our findings underscore the pivotal role of SCUBE3 in driving ovarian cancer progression, shedding light on its intricate molecular mechanisms and establishing it as a potential therapeutic target for this devastating disease.


Assuntos
Neoplasias Ovarianas , beta Catenina , Humanos , Feminino , Camundongos , Animais , beta Catenina/metabolismo , Regulação para Cima/genética , Neoplasias Ovarianas/genética , Transdução de Sinais , Transição Epitelial-Mesenquimal/genética , Via de Sinalização Wnt , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Fator de Transcrição 4/genética , Fator de Transcrição 4/metabolismo
8.
Biochem Biophys Res Commun ; 667: 186-193, 2023 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-37229827

RESUMO

The deubiquitinating enzyme USP14 has been established as a crucial regulator in various diseases, including tumors, neurodegenerative diseases, and metabolic diseases, through its ability to stabilize its substrate proteins. Our group has utilized proteomic techniques to identify new potential substrate proteins for USP14, however, the underlying signaling pathways regulated by USP14 remain largely unknown. Here, we demonstrate the key role of USP14 in both heme metabolism and tumor invasion by stabilizing the protein BACH1. The cellular oxidative stress response factor NRF2 regulates antioxidant protein expression through binding to the antioxidant response element (ARE). BACH1 can compete with NRF2 for ARE binding, leading to the inhibition of the expression of antioxidant genes, including HMOX-1. Activated NRF2 also inhibits the degradation of BACH1, promoting cancer cell invasion and metastasis. Our findings showed a positive correlation between USP14 expression and NRF2 expression in various cancer tissues from the TCGA database and normal tissues from the GTEx database. Furthermore, activated NRF2 was found to increase USP14 expression in ovarian cancer (OV) cells. The overexpression of USP14 was observed to inhibit HMOX1 expression, while USP14 knockdown had the opposite effect, suggesting a role for USP14 in regulating heme metabolism. The depletion of BACH1 or inhibition of heme oxygenase 1 (coded by HMOX-1) was also found to significantly impair USP14-dependent OV cell invasion. In conclusion, our results highlight the importance of the NRF2-USP14-BACH1 axis in regulating OV cell invasion and heme metabolism, providing evidence for its potential as a therapeutic target in related diseases.


Assuntos
Fator 2 Relacionado a NF-E2 , Neoplasias Ovarianas , Humanos , Feminino , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Antioxidantes , Proteômica , Neoplasias Ovarianas/genética , Heme , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Ubiquitina Tiolesterase/genética
9.
Cell Signal ; 107: 110677, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37028779

RESUMO

RNF31, an atypical E3 ubiquitin ligase of the RING-between-RING protein family, is one of the important components of the linear ubiquitin chain complex LUBAC. It plays a carcinogenic role in a variety of cancers by promoting cell proliferation, invasion and inhibiting apoptosis. However, the specific molecular mechanism by which RNF31 exerts its cancer-promoting effects is still unclear. By analyzing the expression profile of RNF31-depleted cancer cells, we found that loss of RNF31 significantly resulted in the inactivation of the c-Myc pathway. We further showed that RNF31 played an important role in the maintenance of c-Myc protein levels in cancer cells by extending the half-life of c-Myc protein and reducing its ubiquitination. c-Myc protein levels are tightly regulated by the ubiquitin proteasome, in which the E3 ligase FBXO32 is required to mediate its ubiquitin-dependent degradation. We found that RNF31 inhibited the transcription of FBXO32 through EZH2-mediated trimethylation of histone H3K27 in the FBXO32 promoter region, leading to the stabilization and activation of c-Myc protein. Under this circumstance, the expression of FBXO32 was significantly increased in RNF31-deficient cells, promoting the degradation of c-Myc protein, inhibiting cell proliferation and invasion, increasing cell apoptosis, and ultimately blocking the progression of tumors. Consistent with these results, the reduced malignancy phenotype caused by RNF31 deficiency could be partially reversed by overexpression of c-Myc or further knockdown of FBXO32. Together, our results reveal a key association between RNF31 and epigenetic inactivation of FBXO32 in cancer cells, and suggest that RNF31 may be a promising target for cancer therapy.


Assuntos
Neoplasias , Ubiquitina , Humanos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Neoplasias/genética , Epigênese Genética , Proteínas Musculares/metabolismo , Proteínas Ligases SKP Culina F-Box/genética
10.
Cell Signal ; 107: 110662, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37001595

RESUMO

PEG3 is a paternally imprinted gene located on chromosome 19q13.4 and one of the most common low-expression genes in human ovarian cancer. PEG3 plays an important role in p53-related cell death. However, whether PEG3 plays a role in renal clear cell carcinoma (ccRCC) remains unclear. Here, we found that PEG3 was epigenetic inactivated and played a tumor suppressor role in ccRCC. Overexpression of PEG3 inhibited ccRCC cell proliferation and colony formation, while removal of PEG3 significantly promoted cell proliferation in vitro and tumor formation in nude mice in vivo. EZH2-mediated H3K27me3 at the PEG3 promoter suppressed PEG3 expression. EZH2 specific inhibitors promote PEG3 transcriptional expression through the transition from H3K27me3 to H3K27ac at the PEG3 promoter region. Depletion of PEG3 inhibited the activation of the p53 signaling pathway, resulting in the resistance of ccRCC to EZH2 inhibitors treatment. Thus, our data show that EZH2-mediated epigenetic inactivation of PEG3 promotes the progress of ccRCC, and reactivation of PEG3 may be a promising strategy for ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Camundongos , Feminino , Animais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Histonas/genética , Camundongos Nus , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo
11.
Cell Death Dis ; 14(2): 83, 2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739418

RESUMO

SEMA6A is a multifunctional transmembrane semaphorin protein that participates in various cellular processes, including axon guidance, cell migration, and cancer progression. However, the role of SEMA6A in clear cell renal cell carcinoma (ccRCC) is unclear. Based on high-throughput sequencing data, here we report that SEMA6A is a novel target gene of the VHL-HIF-2α axis and overexpressed in ccRCC. Chromatin immunoprecipitation and reporter assays revealed that HIF-2α directly activated SEMA6A transcription in hypoxic ccRCC cells. Wnt/ß-catenin pathway activation is correlated with the expression of SEMA6A in ccRCC; the latter physically interacted with SEC62 and promoted ccRCC progression through SEC62-dependent ß-catenin stabilization and activation. Depletion of SEMA6A impaired HIF-2α-induced Wnt/ß-catenin pathway activation and led to defective ccRCC cell proliferation both in vitro and in vivo. SEMA6A overexpression promoted the malignant phenotypes of ccRCC, which was reversed by SEC62 depletion. Collectively, this study revealed a potential role for VHL-HIF-2α-SEMA6A-SEC62 axis in the activation of Wnt/ß-catenin pathway. Thus, SEMA6A may act as a potential therapeutic target, especially in VHL-deficient ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Semaforinas , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Renais/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Regulação para Cima , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
12.
Front Pharmacol ; 13: 1072194, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36744210

RESUMO

Cyclin-dependent kinases 4 and 6 (CDK4/6) are key regulatory proteins in the cell division and proliferative cycle in humans. They are overactive in many malignant tumors, particularly in triple-negative breast cancer (TNBC). Inhibition of CDK4/6 targets can have anti-tumor effects. Here, we designed and synthesized a novel derivative of Ribociclib that could affect CDK4/6, named WXJ-202. This study aimed to investigate the effects of compound WXJ-202 on proliferation, apoptosis, and cell cycle arrest in human breast cancer cell lines and their molecular mechanisms. We assayed cell viability with methyl thiazolyl tetrazolium (MTT) assay. Clone formation, migration, and invasion ability were assayed by clone formation assay, wound healing assay, and transwell invasion assay. The effect of compound WXJ-202 on apoptosis and cell cycle was detected by flow cytometry analysis. Western blotting was performed to detect the expression of proteins related to the CDK4/6-Rb-E2F pathway. The anti-cancer effects were studied in vivo transplantation tumor models. WXJ-202 was shown to inhibit cell proliferation, colony formation, migration, and invasion, as well as induce apoptosis and cycle arrest in breast cancer cells. The levels of proteins related to the CDK4/6-Rb-E2F pathway, such as CDK4, CDK6, and p-Rb, were decreased. Finally, studies had shown that compound WXJ-202 exhibited significant anti-tumor activity in transplantation tumor models. In this research, the compound WXJ-202 was shown to have better anti-tumor cell proliferative effects and could be used as a potential candidate against TNBC tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...