Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Rep ; 38: 101676, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38463640

RESUMO

In the tumor microenvironment, transforming growth factor ß (TGF-ß) contributes to neutrophil development toward a pro-tumor phenotype; however, the molecular mechanism by which this occurs remains unclear. Therefore, we explored the role of TGF-ß in N2 neutrophil polarization and the subsequent effect on oral leukoplakia/oral squamous cell carcinoma (OL/OSCC) cells. The TGF-ß-stimulated N2 culture supernatant promoted the proliferation of OL/OSCC cells. Analysis of the N2 supernatant using a cytokine array revealed significantly upregulated expression of soluble forms of receptor for advanced glycation end products (RAGE). TGF-ß was found to induce the expression of RAGE and matrix metalloproteinase 9 (MMP9) in neutrophils. Additionally, MMP9 treatment could cleave RAGE and promote its secretion by neutrophils, thereby promoting cancer cell proliferation. In an established mouse model of oral cancer using 4NQO, RAGE were found to be highly expressed. Importantly, neutralizing antibodies against RAGE significantly inhibited oral cancer progression in mice. Analysis of clinical data from the TCGA database revealed that RAGE and MMP9 are highly expressed in head and neck squamous cell carcinoma (HNSCC) and that RAGE expression is significantly positively correlated with neutrophil infiltration. In conclusion, our results indicate that TGF-ß promotes N2 neutrophil polarization through upregulation of soluble RAGE (sRAGE) secretion, leading to OSCC cell proliferation. Our findings also suggest that the sRAGE formed during N2 polarization may be a potential therapeutic target in OL/OSCC.

2.
Ecotoxicol Environ Saf ; 253: 114682, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36842276

RESUMO

Due to relatively lower toxicity, bisphenol S (BPS) has become an alternative to previously used bisphenol A. Nevertheless, the occurrence of BPS and its ecological impact have recently attracted increasing attentions because the toxicology effect of BPS with life cycle or multigenerational exposure on aquatic organisms remains questionable. Herein, Daphnia magna (D. magna) multigenerational bioassays spanning four generations (F0-F3) and single-generation recovery (F1 and F3) in clean water were used to investigate the ecotoxicology of variable chronic BPS exposure. For both assays, four kinds of life-history traits (i.e., survival, reproduction, growth and ecological behavior) were examined for each generation. After an 18-day exposure under concentration of 200 µg/L, the survival rate of D. magna was less than 15 % for the F2 generation, whereas all died for the F3 generation. With continuous exposure of four generations of D. magna at environmentally relevant concentrations of BPS (2 µg/L), inhibition of growth and development, prolonged sexual maturity, decreased offspring production and decreased swimming activity were observed for the F3 generation. In particular, it is difficult for D. magna to return to its normal level through a single-generation recovery in clean water in terms of reproductive function, ecological behavior and population health. Hence, multi-generational exposure to low concentrations of BPS can have adverse effects on population health of aquatic organisms with short breeding cycles, highlighting the necessity to assess the ecotoxicology of chronic BPS exposure for public health.


Assuntos
Daphnia , Exposição Ambiental , Poluentes Químicos da Água , Daphnia/efeitos dos fármacos , Características de História de Vida , Análise de Sobrevida , Reprodução/efeitos dos fármacos , Natação , Comportamento Animal/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Testes de Toxicidade Crônica
3.
Theor Biol Med Model ; 10: 41, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23800293

RESUMO

BACKGROUND: Recently, melanoma has become the most malignant and commonly occurring skin cancer. Melanoma is not only the major source (75%) of deaths related to skin cancer, but also it is hard to be treated by the conventional drugs. Recent research indicated that angiogenesis is an important factor for tumor initiation, expansion, and response to therapy. Thus, we proposed a novel multi-scale agent-based computational model that integrates the angiogenesis into tumor growth to study the response of melanoma cancer under combined drug treatment. RESULTS: Our multi-scale agent-based model can simulate the melanoma tumor growth with angiogenesis under combined drug treatment. The significant synergistic effects between drug Dox and drug Sunitinib demonstrated the clinical potential to interrupt the communication between melanoma cells and its related vasculatures. Also, the sensitivity analysis of the model revealed that diffusivity related to the micro-vasculatures around tumor tissues closely correlated with the spread, oscillation and destruction of the tumor. CONCLUSIONS: Simulation results showed that the 3D model can represent key features of melanoma growth, angiogenesis, and its related micro-environment. The model can help cancer researchers understand the melanoma developmental mechanism. Drug synergism analysis suggested that interrupting the communications between melanoma cells and the related vasculatures can significantly increase the drug efficacy against tumor cells.


Assuntos
Melanoma/irrigação sanguínea , Modelos Teóricos , Neoplasias Cutâneas/irrigação sanguínea , Apoptose , Humanos , Melanoma/patologia , Neoplasias Cutâneas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...