Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202403023, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38763905

RESUMO

The efficient electrosynthesis of hydrogen peroxide (H2O2) via two-electron oxygen reduction reaction (2e- ORR) in neutral media is undoubtedly a practical route, but the limited comprehension of electrocatalysts has hindered the system advancement. Herein, we present the design of model catalysts comprising mesoporous carbon spheres-supported Pd nanoparticles for H2O2 electrosynthesis at near-zero overpotential with approximately 95% selectivity in a neutral electrolyte. Impressively, the optimized Pd/MCS-8 electrocatalyst in a flow cell device achieves an exceptional H2O2 yield of 15.77 mol gcatalyst-1 h-1, generating a neutral H2O2 solution with an accumulated concentration of 6.43 wt.%, a level sufficiently high for medical disinfection. Finite element simulation and experimental results suggest that mesoporous carbon carriers promote O2 enrichment and localized pH elevation, establishing a favorable microenvironment for 2e- ORR in neutral media. Density functional theory calculations reveal that the robust interaction between Pd nanoparticles and the carbon carriers optimized the adsorption of OOH* at the carbon edge, ensuring high active 2e- process. These findings offer new insights into carbon-loaded electrocatalysts for efficient 2e- ORR in neutral media, emphasizing the role of carrier engineering in constructing favorable microenvironments and synergizing active sites.

2.
Nat Commun ; 15(1): 983, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302469

RESUMO

The nanoreactor holds great promise as it emulates the natural processes of living organisms to facilitate chemical reactions, offering immense potential in catalytic energy conversion owing to its unique structural functionality. Here, we propose the utilization of precisely engineered carbon spheres as building blocks, integrating micromechanics and controllable synthesis to explore their catalytic functionalities in two-electron oxygen reduction reactions. After conducting rigorous experiments and simulations, we present compelling evidence for the enhanced mass transfer and microenvironment modulation effects offered by these mesoporous hollow carbon spheres, particularly when possessing a suitably sized hollow architecture. Impressively, the pivotal achievement lies in the successful screening of a potent, selective, and durable two-electron oxygen reduction reaction catalyst for the direct synthesis of medical-grade hydrogen peroxide disinfectant. Serving as an exemplary demonstration of nanoreactor engineering in catalyst screening, this work highlights the immense potential of various well-designed carbon-based nanoreactors in extensive applications.

3.
Nano Lett ; 24(5): 1650-1659, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38265360

RESUMO

Precision nanoengineering of porous two-dimensional structures has emerged as a promising avenue for finely tuning catalytic reactions. However, understanding the pore-structure-dependent catalytic performance remains challenging, given the lack of comprehensive guidelines, appropriate material models, and precise synthesis strategies. Here, we propose the optimization of two-dimensional carbon materials through the utilization of mesopores with 5-10 nm diameter to facilitate fluid acceleration, guided by finite element simulations. As proof of concept, the optimized mesoporous carbon nanosheet sample exhibited exceptional electrocatalytic performance, demonstrating high selectivity (>95%) and a notable diffusion-limiting disk current density of -3.1 mA cm-2 for H2O2 production. Impressively, the electrolysis process in the flow cell achieved a production rate of 14.39 mol gcatalyst-1 h-1 to yield a medical-grade disinfectant-worthy H2O2 solution. Our pore engineering research focuses on modulating oxygen reduction reaction activity and selectivity by affecting local fluid transport behavior, providing insights into the mesoscale catalytic mechanism.

4.
Small ; 17(49): e2103224, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34611983

RESUMO

Photocatalysis offers a sustainable strategy for hydrogen peroxide (H2 O2 ) production, which is an essential oxidant and emerging energy carrier in modern chemical industry. The development of polymer-based photocatalysts to produce H2 O2 has great potential but is limited by lower efficiency due to the limitation of light utilization and the low charge separation efficiency. Herein, a series of monodispersed mesoporous resorcinol-formaldehyde resin spheres (MRFS) are reported with a rational designed spatial charge distribution, exhibiting wide light absorption with a solar-to-chemical conversion (SCC) efficiency of 1.1%. Surface photovoltage microscopy (SPVM) measurements unraveled the charge separation in nanospace with uneven distribution of donor (D) and acceptor (A) sites. A density functional theory (DFT) calculation elucidated the origin of photogenerated electrons and holes. Moreover, MRFS demonstrates photocatalytic water oxidation ability. The findings in this work open a new avenue for the development of porous polymeric photocatalysts toward highly efficient solar energy conversion.

5.
ACS Appl Mater Interfaces ; 13(33): 39763-39771, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433252

RESUMO

Gas-involving electrocatalytic reactions are of critical importance in the development of carbon-neutral energy technologies. However, the catalytic performance is always limited by the unsatisfactory diffusion properties of reactants as well as products. In spite of significant advances in catalyst design, the development of mesoscale mass diffusion and process intensification is still challenging due to the lack of material platforms, synthesis methods, and mechanism understanding. In this work, as a proof of concept, we demonstrated achieving these two critical factors in one system by designing a mesoporous carbon bowl (MCB) nanoreactor with both abundant highly active sites and enhanced diffusion properties. The catalysts with controlled opening morphology and mesoporous channels were carefully synthesized via a hydrogen-bonding uneven self-assembling followed by pyrolysis. Taking the two-electron oxygen reduction reaction (ORR) for the H2O2 production as a model, which is a strong diffusion-limiting reaction, the optimal MCB samples achieved a high H2O2 selectivity (>90%) across a wide potential window of 0.6 V, and a large cathodic current density of -2.7 mA cm-2 (at 0.1 V vs RHE). The electrochemical evaluation and finite-element simulation study for a series of MCBs revealed that the similar active sites intrinsically determined the H2O2 selectivity, while the well-designed mesoporous bowl configuration with different window sizes boosted the ORR activity by significantly accelerating the local mass diffusion. This work sheds new insights into the engineering of intrinsic active sites and local mass diffusion properties for electrocatalysts, which bridges the research of electrocatalysis from fundamental atomic-scale and practical macroscale devices.

6.
Chem Commun (Camb) ; 53(55): 7780-7783, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28650006

RESUMO

A hierarchical yolk-shell@shell nanoreactor that spatially positioned Pd nanoparticles and the CALB enzyme in separated domains is constructed, and served as an efficient bifunctional catalyst for the one-pot dynamic kinetic resolution (DKR) reaction of 1-phenylethylamine with excellent activity and selectivity.

7.
Angew Chem Int Ed Engl ; 56(29): 8459-8463, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28471042

RESUMO

There is a strong desire to design and synthesize catalysts that assemble at the oil-water interface to improve the efficiency of biphasic reactions. Anisotropic dumbbell-shaped bi-component mesoporous carbon-organosilica Janus particles with asymmetric wettability are synthesized through a one-step compartmentalized growth of a mesoporous organosilica sphere attached to a mesoporous resorcinol-formaldehyde (RF) sphere. A library was prepared of tunable Janus particles possessing diverse hollow structures with various functionalities. As a proof of concept, the Janus particle-derived catalyst can assemble at the oil-water interface to stabilize Pickering emulsions. Owing to the increased reaction interface area, the Janus catalyst exhibits a more than three-fold increase in catalytic efficiency compared to the Pt loaded carbon sphere catalyst in aqueous hydrogenation reactions.

8.
Neural Plast ; 2014: 786985, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24778886

RESUMO

Renshaw recurrent inhibition (RI) plays an important gated role in spinal motion circuit. Peripheral nerve injury is a common disease in clinic. Our current research was designed to investigate the change of the recurrent inhibitory function in the spinal cord after the peripheral nerve crush injury in neonatal rat. Sciatic nerve crush was performed on 5-day-old rat puppies and the recurrent inhibition between lateral gastrocnemius-soleus (LG-S) and medial gastrocnemius (MG) motor pools was assessed by conditioning monosynaptic reflexes (MSR) elicited from the sectioned dorsal roots and recorded either from the LG-S and MG nerves by antidromic stimulation of the synergist muscle nerve. Our results demonstrated that the MSR recorded from both LG-S or MG nerves had larger amplitude and longer latency after neonatal sciatic nerve crush. The RI in both LG-S and MG motoneuron pools was significantly reduced to virtual loss (15-20% of the normal RI size) even after a long recovery period upto 30 weeks after nerve crush. Further, the degree of the RI reduction after tibial nerve crush was much less than that after sciatic nerve crush indicatig that the neuron-muscle disconnection time is vital to the recovery of the spinal neuronal circuit function during reinnervation. In addition, sciatic nerve crush injury did not cause any spinal motor neuron loss but severally damaged peripheral muscle structure and function. In conclusion, our results suggest that peripheral nerve injury during neonatal early development period would cause a more sever spinal cord inhibitory circuit damage, particularly to the Renshaw recurrent inhibition pathway, which might be the target of neuroregeneration therapy.


Assuntos
Animais Recém-Nascidos/fisiologia , Compressão Nervosa , Inibição Neural/fisiologia , Nervo Isquiático/patologia , Animais , Estimulação Elétrica , Fenômenos Eletrofisiológicos/fisiologia , Membro Posterior/inervação , Peroxidase do Rábano Silvestre , Masculino , Neurônios Motores/fisiologia , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Regeneração Nervosa/fisiologia , Ratos , Ratos Wistar , Reflexo Monosináptico/fisiologia , Nervo Tibial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...