Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 242(6): 2635-2651, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38634187

RESUMO

Endosperm is the main storage organ in cereal grain and determines grain yield and quality. The molecular mechanisms of heat shock proteins in regulating starch biosynthesis and endosperm development remain obscure. Here, we report a rice floury endosperm mutant flo24 that develops abnormal starch grains in the central starchy endosperm cells. Map-based cloning and complementation test showed that FLO24 encodes a heat shock protein HSP101, which is localized in plastids. The mutated protein FLO24T296I dramatically lost its ability to hydrolyze ATP and to rescue the thermotolerance defects of the yeast hsp104 mutant. The flo24 mutant develops more severe floury endosperm when grown under high-temperature conditions than normal conditions. And the FLO24 protein was dramatically induced at high temperature. FLO24 physically interacts with several key enzymes required for starch biosynthesis, including AGPL1, AGPL3 and PHO1. Combined biochemical and genetic evidence suggests that FLO24 acts cooperatively with HSP70cp-2 to regulate starch biosynthesis and endosperm development in rice. Our results reveal that FLO24 acts as an important regulator of endosperm development, which might function in maintaining the activities of enzymes involved in starch biosynthesis in rice.


Assuntos
Endosperma , Regulação da Expressão Gênica de Plantas , Mutação , Oryza , Proteínas de Plantas , Amido , Oryza/genética , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Endosperma/metabolismo , Endosperma/crescimento & desenvolvimento , Amido/metabolismo , Amido/biossíntese , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Mutação/genética , Ligação Proteica , Plastídeos/metabolismo , Teste de Complementação Genética , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/biossíntese , Termotolerância , Fatores de Transcrição
2.
J Integr Plant Biol ; 65(7): 1687-1702, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36897026

RESUMO

Pentatricopeptide repeat (PPR) proteins function in post-transcriptional regulation of organellar gene expression. Although several PPR proteins are known to function in chloroplast development in rice (Oryza sativa), the detailed molecular functions of many PPR proteins remain unclear. Here, we characterized a rice young leaf white stripe (ylws) mutant, which has defective chloroplast development during early seedling growth. Map-based cloning revealed that YLWS encodes a novel P-type chloroplast-targeted PPR protein with 11 PPR motifs. Further expression analyses showed that many nuclear- and plastid-encoded genes in the ylws mutant were significantly changed at the RNA and protein levels. The ylws mutant was impaired in chloroplast ribosome biogenesis and chloroplast development under low-temperature conditions. The ylws mutation causes defects in the splicing of atpF, ndhA, rpl2, and rps12, and editing of ndhA, ndhB, and rps14 transcripts. YLWS directly binds to specific sites in the atpF, ndhA, and rpl2 pre-mRNAs. Our results suggest that YLWS participates in chloroplast RNA group II intron splicing and plays an important role in chloroplast development during early leaf development.


Assuntos
Oryza , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Plastídeos/metabolismo , RNA de Cloroplastos/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Oryza/metabolismo , Regulação da Expressão Gênica de Plantas/genética
3.
Plant Mol Biol ; 111(3): 291-307, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36469200

RESUMO

KEY MESSAGE: We identified a dosage-dependent dominant negative form of Sar1c, which confirms the essential role of COPII system in mediating ER export of storage proteins in rice endosperm. Higher plants accumlate large amounts of seed storage proteins (SSPs). However, mechanisms underlying SSP trafficking are largely unknown, especially the ER-Golgi anterograde process. Here, we showed that a rice glutelin precursor accumulation13 (gpa13) mutant exhibited floury endosperm and overaccumulated glutelin precursors, which phenocopied the reported RNAi-Sar1abc line. Molecular cloning revealed that the gpa13 allele encodes a mutated Sar1c (mSar1c) with a deletion of two conserved amino acids Pro134 and Try135. Knockdown or knockout of Sar1c alone caused no obvious phenotype, while overexpression of mSar1c resulted in seedling lethality similar to the gpa13 mutant. Transient expression experiment in tobacco combined with subcellular fractionation experiment in gpa13 demonstrated that the expression of mSar1c affects the subcellular distribution of all Sar1 isoforms and Sec23c. In addition, mSar1c failed to interact with COPII component Sec23. Conversely, mSar1c competed with Sar1a/b/d to interact with guanine nucleotide exchange factor Sec12. Together, we identified a dosage-dependent dominant negative form of Sar1c, which confirms the essential role of COPII system in mediating ER export of storage proteins in rice endosperm.


Assuntos
Oryza , Proteínas de Armazenamento de Sementes , Proteínas de Armazenamento de Sementes/metabolismo , Oryza/genética , Transporte Proteico/genética , Glutens/genética , Retículo Endoplasmático/metabolismo
5.
Plant Physiol ; 187(4): 2174-2191, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33871646

RESUMO

Protein storage vacuoles (PSVs) are unique organelles that accumulate storage proteins in plant seeds. Although morphological evidence points to the existence of multiple PSV-trafficking pathways for storage protein targeting, the molecular mechanisms that regulate these processes remain mostly unknown. Here, we report the functional characterization of the rice (Oryza sativa) glutelin precursor accumulation7 (gpa7) mutant, which over-accumulates 57-kDa glutelin precursors in dry seeds. Cytological and immunocytochemistry studies revealed that the gpa7 mutant exhibits abnormal accumulation of storage prevacuolar compartment-like structures, accompanied by the partial mistargeting of glutelins to the extracellular space. The gpa7 mutant was altered in the CCZ1 locus, which encodes the rice homolog of Arabidopsis (Arabidopsis thaliana) CALCIUM CAFFEINE ZINC SENSITIVITY1a (CCZ1a) and CCZ1b. Biochemical evidence showed that rice CCZ1 interacts with MONENSIN SENSITIVITY1 (MON1) and that these proteins function together as the Rat brain 5 (Rab5) effector and the Rab7 guanine nucleotide exchange factor (GEF). Notably, loss of CCZ1 function promoted the endosomal localization of vacuolar protein sorting-associated protein 9 (VPS9), which is the GEF for Rab5 in plants. Together, our results indicate that the MON1-CCZ1 complex is involved in post-Golgi trafficking of rice storage protein through a Rab5- and Rab7-dependent pathway.


Assuntos
Glutens/genética , Glutens/metabolismo , Oryza/genética , Oryza/metabolismo , Sementes/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , China , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Mutação , Sementes/genética , Proteínas de Transporte Vesicular/genética , Proteínas rab de Ligação ao GTP/genética
6.
Plant Physiol ; 187(4): 2192-2208, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33624820

RESUMO

Dense vesicles (DVs) are Golgi-derived plant-specific carriers that mediate post-Golgi transport of seed storage proteins in angiosperms. How this process is regulated remains elusive. Here, we report a rice (Oryza sativa) mutant, named glutelin precursor accumulation8 (gpa8) that abnormally accumulates 57-kDa proglutelins in the mature endosperm. Cytological analyses of the gpa8 mutant revealed that proglutelin-containing DVs were mistargeted to the apoplast forming electron-dense aggregates and paramural bodies in developing endosperm cells. Differing from previously reported gpa mutants with post-Golgi trafficking defects, the gpa8 mutant showed bent Golgi bodies, defective trans-Golgi network (TGN), and enlarged DVs, suggesting a specific role of GPA8 in DV biogenesis. We demonstrated that GPA8 encodes a subunit E isoform 1 of vacuolar H+-ATPase (OsVHA-E1) that mainly localizes to TGN and the tonoplast. Further analysis revealed that the luminal pH of the TGN and vacuole is dramatically increased in the gpa8 mutant. Moreover, the colocalization of GPA1 and GPA3 with TGN marker protein in gpa8 protoplasts was obviously decreased. Our data indicated that OsVHA-E1 is involved in endomembrane luminal pH homeostasis, as well as maintenance of Golgi morphology and TGN required for DV biogenesis and subsequent protein trafficking in rice endosperm cells.


Assuntos
Glutens/metabolismo , Oryza/genética , Oryza/metabolismo , Isoformas de Proteínas/metabolismo , Transporte Proteico/fisiologia , Sementes/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , China , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Glutens/genética , Mutação , Isoformas de Proteínas/genética , Sementes/genética , Proteínas de Transporte Vesicular/genética
7.
Mol Plant ; 14(2): 315-329, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33278597

RESUMO

Low temperature is a major environmental factor that limits plant growth and productivity. Although transient elevation of cytoplasmic calcium has long been recognized as a critical signal for plant cold tolerance, the calcium channels responsible for this process have remained largely elusive. Here we report that OsCNGC9, a cyclic nucleotide-gated channel, positively regulates chilling tolerance by mediating cytoplasmic calcium elevation in rice (Oryza sativa). We showed that the loss-of-function mutant of OsCNGC9 is defective in cold-induced calcium influx and more sensitive to prolonged cold treatment, whereas OsCNGC9 overexpression confers enhanced cold tolerance. Mechanistically, we demonstrated that in response to chilling stress, OsSAPK8, a homolog of Arabidopsis thaliana OST1, phosphorylates and activates OsCNGC9 to trigger Ca2+ influx. Moreover, we found that the transcription of OsCNGC9 is activated by a rice dehydration-responsive element-binding transcription factor, OsDREB1A. Taken together, our results suggest that OsCNGC9 enhances chilling tolerance in rice through regulating cold-induced calcium influx and cytoplasmic calcium elevation.


Assuntos
Adaptação Fisiológica/genética , Temperatura Baixa , Oryza/genética , Oryza/fisiologia , Proteínas de Plantas/genética , Ativação Transcricional/genética , Sequência de Aminoácidos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Mutação/genética , Motivos de Nucleotídeos/genética , Fosforilação , Fosfosserina/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Elementos de Resposta/genética , Plântula/genética , Plântula/fisiologia , Estresse Fisiológico/genética , Transcrição Gênica
8.
J Integr Plant Biol ; 63(5): 834-847, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33283410

RESUMO

Pentatricopeptide repeat (PPR) proteins, composing one of the largest protein families in plants, are involved in RNA binding and regulation of organelle RNA metabolism at the post-transcriptional level. Although several PPR proteins have been implicated in endosperm development in rice (Oryza sativa), the molecular functions of many PPRs remain obscure. Here, we identified a rice endosperm mutant named floury endosperm 18 (flo18) with pleiotropic defects in both reproductive and vegetative development. Map-based cloning and complementation tests showed that FLO18 encodes a mitochondrion-targeted P-type PPR protein with 15 PPR motifs. Mitochondrial function was disrupted in the flo18 mutant, as evidenced by decreased assembly of Complex I in the mitochondrial electron transport chain and altered mitochondrial morphology. Loss of FLO18 function resulted in defective 5'-end processing of mitochondrial nad5 transcripts encoding subunit 5 of nicotinamide adenine dinucleotide hydrogenase. These results suggested that FLO18 is involved in 5'-end processing of nad5 messenger RNA and plays an important role in mitochondrial function and endosperm development.


Assuntos
Endosperma/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Regulação da Expressão Gênica de Plantas , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Oryza/genética , Proteínas de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo
9.
Plant Mol Biol ; 104(4-5): 429-450, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32808190

RESUMO

KEY MESSAGE: OsWRKY36 represses plant height and grain size by inhibiting gibberellin signaling. Plant height and grain size are important agronomic traits affecting yield in cereals, including rice. Gibberellins (GAs) are plant hormones that promote plant growth and developmental processions such as stem elongation and grain size. WRKYs are transcription factors that regulate stress tolerance and plant development including height and grain size. However, the relationship between GA signaling and WRKY genes is still poorly understood. Here, we characterized a small grain and semi-dwarf 3 (sgsd3) mutant in rice cv. Hwayoung (WT). A T-DNA insertion in the 5'-UTR of OsWRKY36 induced overexpression of OsWRKY36 in the sgsd3 mutant, likely leading to the mutant phenotype. This was confirmed by the finding that overexpression of OsWRKY36 caused a similar small grain and semi-dwarf phenotype to the sgsd3 mutant whereas knock down and knock out caused larger grain phenotypes. The sgsd3 mutant was also hyposensitive to GA and accumulated higher mRNA and protein levels of SLR1 (a GA signaling DELLA-like inhibitor) compared with the WT. Further assays showed that OsWRKY36 enhanced SLR1 transcription by directly binding to its promoter. In addition, we found that OsWRKY36 can protect SLR1 from GA-mediated degradation. We thus identified a new GA signaling repressor OsWRKY36 that represses GA signaling through stabilizing the expression of SLR1.


Assuntos
Oryza/crescimento & desenvolvimento , Oryza/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Regiões 5' não Traduzidas , DNA Bacteriano , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Mutação , Oryza/citologia , Fenótipo , Células Vegetais , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Caules de Planta/citologia , Caules de Planta/genética , Regiões Promotoras Genéticas , Estabilidade Proteica , Interferência de RNA , Sementes/genética , Sementes/crescimento & desenvolvimento , Transdução de Sinais , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
10.
Plant Cell ; 32(3): 758-777, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31949008

RESUMO

Dense vesicles (DVs) are vesicular carriers, unique to plants, that mediate post-Golgi trafficking of storage proteins to protein storage vacuoles (PSVs) in seeds. However, the molecular mechanisms regulating the directional targeting of DVs to PSVs remain elusive. Here, we show that the rice (Oryza sativa) glutelin precursor accumulation5 (gpa5) mutant is defective in directional targeting of DVs to PSVs, resulting in discharge of its cargo proteins into the extracellular space. Molecular cloning revealed that GPA5 encodes a plant-unique phox-homology domain-containing protein homologous to Arabidopsis (Arabidopsis thaliana) ENDOSOMAL RAB EFFECTOR WITH PX-DOMAIN. We show that GPA5 is a membrane-associated protein capable of forming homodimers and that it is specifically localized to DVs in developing endosperm. Colocalization, biochemical, and genetic evidence demonstrates that GPA5 acts in concert with Rab5a and VPS9a to regulate DV-mediated post-Golgi trafficking to PSVs. Furthermore, we demonstrated that GPA5 physically interacts with a class C core vacuole/endosome tethering complex and a seed plant-specific VAMP727-containing R-soluble N-ethylmaleimide sensitive factor attachment protein receptor complex. Collectively, our results suggest that GPA5 functions as a plant-specific effector of Rab5a required for mediating tethering and membrane fusion of DVs with PSVs in rice endosperm.


Assuntos
Complexo de Golgi/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , Endosperma/metabolismo , Glutens/metabolismo , Complexo de Golgi/ultraestrutura , Proteínas de Membrana/metabolismo , Modelos Biológicos , Mutação/genética , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Plantas/química , Ligação Proteica , Multimerização Proteica , Transporte Proteico , Proteínas de Armazenamento de Sementes/química , Vacúolos/metabolismo , Vacúolos/ultraestrutura
11.
New Phytol ; 224(2): 712-724, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31264225

RESUMO

Spikelet is the primary reproductive structure and a critical determinant of grain yield in rice. The molecular mechanisms regulating rice spikelet development still remain largely unclear. Here, we report that mutations in OsPEX5, which encodes a peroxisomal targeting sequence 1 (PTS1) receptor protein, cause abnormal spikelet morphology. We show that OsPEX5 can physically interact with OsOPR7, an enzyme involved in jasmonic acid (JA) biosynthesis and is required for its import into peroxisome. Similar to Ospex5 mutant, the knockout mutant of OsOPR7 generated via CRISPR-Cas9 technology has reduced levels of endogenous JA and also displays an abnormal spikelet phenotype. Application of exogenous JA can partially rescue the abnormal spikelet phenotype of Ospex5 and Osopr7. Furthermore, we show that OsMYC2 directly binds to the promoters of OsMADS1, OsMADS7 and OsMADS14 to activate their expression, and subsequently regulate spikelet development. Our results suggest that OsPEX5 plays a critical role in regulating spikelet development through mediating peroxisomal import of OsOPR7, therefore providing new insights into regulation of JA biosynthesis in plants and expanding our understanding of the biological role of JA in regulating rice reproduction.


Assuntos
Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Oryza/crescimento & desenvolvimento , Oxilipinas/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Proteínas de Plantas/metabolismo , Clonagem Molecular , DNA de Plantas/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Mutação , Oryza/genética , Receptor 1 de Sinal de Orientação para Peroxissomos/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas
12.
J Exp Bot ; 70(18): 4705-4720, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31087099

RESUMO

Pentatricopeptide repeat (PPR) proteins constitute one of the largest protein families in land plants. Recent studies revealed the functions of PPR proteins in organellar RNA metabolism and plant development, but the functions of most PPR proteins, especially PPRs localized in the nucleus, remain largely unknown. Here, we report the isolation and characterization of a rice mutant named floury and growth retardation1 (fgr1). fgr1 showed floury endosperm with loosely arranged starch grains, decreased starch and amylose contents, and retarded seedling growth. Map-based cloning showed that the mutant phenotype was caused by a single nucleotide substitution in the coding region of Os08g0290000. This gene encodes a nuclear-localized PPR protein, which we named OsNPPR1, that affected mitochondrial function. In vitro SELEX and RNA-EMSAs showed that OsNPPR1 was an RNA protein that bound to the CUCAC motif. Moreover, a number of retained intron (RI) events were detected in fgr1. Thus, OsNPPR1 was involved in regulation of mitochondrial development and/or functions that are important for endosperm development. Our results provide novel insights into coordinated interaction between nuclear-localized PPR proteins and mitochondrial function.


Assuntos
Endosperma/crescimento & desenvolvimento , Mitocôndrias/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Endosperma/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo
13.
New Phytol ; 223(2): 736-750, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30916395

RESUMO

Endosperm, the major storage organ in cereal grains, determines grain yield and quality. Despite the fact that a role for P-type pentatricopeptide repeat (PPR) proteins in the regulation of endosperm development has emerged, molecular functions of many P-type PPR proteins remain obscure. Here, we report a rice endosperm defective mutant, floury endosperm10 (flo10), which developed smaller starch grains in starchy endosperm and abnormal cells in the aleurone layer. Map-based cloning and rescued experiments showed that FLO10 encodes a P-type PPR protein with 26 PPR motifs, which is localized to mitochondria. Loss of function of FLO10 affected the trans-splicing of the mitochondrial nad1 intron 1, which was accompanied by the increased accumulation of the nad1 exon 1 and exons 2-5 precursors. The failed formation of mature nad1 led to a dramatically decreased assembly and activity of complex I, reduced ATP production, and changed mitochondrial morphology. In addition, loss of function of FLO10 significantly induced an alternative respiratory pathway involving alternative oxidase. These results reveal that FLO10 plays an important role in the maintenance of mitochondrial function and endosperm development through its effect on the trans-splicing of the mitochondrial nad1 intron 1 in rice.


Assuntos
Endosperma/embriologia , Íntrons/genética , Mitocôndrias/metabolismo , Oryza/embriologia , Oryza/genética , Proteínas de Plantas/genética , Trans-Splicing/genética , Respiração Celular , Complexo I de Transporte de Elétrons/metabolismo , Endosperma/metabolismo , Endosperma/ultraestrutura , Regulação da Expressão Gênica de Plantas , Mitocôndrias/ultraestrutura , Mutação/genética , Oryza/ultraestrutura , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sequências Repetitivas de Aminoácidos , Amido/metabolismo
14.
Plant Physiol ; 180(1): 381-391, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30796160

RESUMO

Ubiquitination and deubiquitination are reversible processes that play crucial roles in regulating organ size in plants. However, information linking deubiquitination and seed size in rice (Oryza sativa) is limited. Here, we characterized a dominant large-grain mutant, large grain1-D (lg1-D), with a 30.8% increase in seed width and a 34.5% increase in 1,000-grain weight relative to the wild type. The lg1-D mutant had more cells oriented in the lateral direction of the spikelet hull compared with the wild type. Map-based cloning showed that LG1 encodes a constitutively expressed ubiquitin-specific protease15 (OsUBP15) that possesses deubiquitination activity in vitro. Loss-of-function and down-regulated expression of OsUBP15 produced narrower and smaller grains than the control. A set of in vivo experiments indicated that the mutant Osubp15 had enhanced protein stability relative to wild-type OsUBP15. Further experiments verified that OsDA1 directly interacted with OsUBP15. Genetic data indicated that OsUBP15 and GRAIN WIDTH 2 (GW2) were not independent in regulating grain width and size. In summary, we identified OsUBP15 as a positive regulator of grain width and size in rice and provide a promising strategy for improvement of grain yield by pyramiding OsUBP15 and gw2.


Assuntos
Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Proteases Específicas de Ubiquitina/metabolismo , Proliferação de Células , Clonagem Molecular , Estabilidade Enzimática , Regulação da Expressão Gênica de Plantas , Mutação , Oryza/genética , Células Vegetais , Plantas Geneticamente Modificadas , Sementes/citologia , Sementes/genética , Proteases Específicas de Ubiquitina/genética , Ubiquitinação
15.
Plant Biotechnol J ; 17(8): 1679-1693, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30771255

RESUMO

Lesion mimic mutants that exhibit spontaneous hypersensitive response (HR)-like necrotic lesions are ideal experimental systems for elucidating molecular mechanisms involved in plant cell death and defence responses. Here we report identification of a rice lesion mimic mutant, spotted leaf 35 (spl35), and cloning of the causal gene by TAIL-PCR strategy. spl35 exhibited decreased chlorophyll content, higher accumulation of H2 O2 , up-regulated expression of defence-related marker genes, and enhanced resistance to both fungal and bacterial pathogens of rice. The SPL35 gene encodes a novel CUE (coupling of ubiquitin conjugation to ER degradation) domain-containing protein that is predominantly localized in cytosol, ER and unknown punctate compartment(s). SPL35 is constitutively expressed in all organs, and both overexpression and knockdown of SPL35 cause the lesion mimic phenotype. SPL35 directly interacts with the E2 protein OsUBC5a and the coatomer subunit delta proteins Delta-COP1 and Delta-COP2 through the CUE domain, and down-regulation of these interacting proteins also cause development of HR-like lesions resembling those in spl35 and activation of defence responses, indicating that SPL35 may be involved in the ubiquitination and vesicular trafficking pathways. Our findings provide insight into a role of SPL35 in regulating cell death and defence response in plants.


Assuntos
Morte Celular , Resistência à Doença/genética , Oryza/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Regulação da Expressão Gênica de Plantas , Mutação , Oryza/microbiologia , Fenótipo , Doenças das Plantas/microbiologia , Folhas de Planta , Domínios Proteicos
16.
Plant Cell Rep ; 38(3): 345-359, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30649573

RESUMO

KEY MESSAGE: FLO15encodes a plastidic glyoxalase I protein, OsGLYI7, which affects compound starch granule formation and starch synthesis in rice endosperm. Starch synthesis in rice (Oryza sativa) endosperm is a sophisticated process, and its underlying molecular machinery still remains to be elucidated. Here, we identified and characterized two allelic rice floury endosperm 15 (flo15) mutants, both with a white-core endosperm. The flo15 grains were characterized by defects in compound starch granule development, along with decreased starch content. Map-based cloning of the flo15 mutants identified mutations in OsGLYI7, which encodes a glyoxalase I (GLYI) involved in methylglyoxal (MG) detoxification. The mutations of FLO15/OsGLYI7 resulted in increased MG content in flo15 developing endosperms. FLO15/OsGLYI7 localizes to the plastids, and the in vitro GLYI activity derived from flo15 was significantly decreased relative to the wild type. Moreover, the expression of starch synthesis-related genes was obviously altered in the flo15 mutants. These findings suggest that FLO15 plays an important role in compound starch granule formation and starch synthesis in rice endosperm.


Assuntos
Endosperma/enzimologia , Regulação da Expressão Gênica de Plantas , Lactoilglutationa Liase/metabolismo , Oryza/enzimologia , Amido/metabolismo , Grânulos Citoplasmáticos/metabolismo , Endosperma/citologia , Endosperma/genética , Genes Reporter , Lactoilglutationa Liase/genética , Mutação , Oryza/citologia , Oryza/genética , Fenótipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plastídeos/enzimologia , Sementes/citologia , Sementes/enzimologia , Sementes/genética , Técnicas do Sistema de Duplo-Híbrido
17.
Plant Sci ; 277: 89-99, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30466604

RESUMO

Mutations of stromal Hsp70 cause chloroplast developmental abnormalities and knockout mutants of stromal Hsp70 usually exhibit protein import deficiencies. However, their effects have not been studied in amyloplast development. Here, we identified an amyloplast abnormal development mutant, floury endosperm11 (flo11) that exhibited an opaque phenotype in the inner core and the periphery of grains. Semi-thin section revealed defective amyloplast development in the flo11 endosperm. Map-based cloning and subsequent complementation test demonstrated that FLO11 encoded a plastid-localized heat shock protein 70 (OsHsp70cp-2). OsHsp70cp-2 was abundantly expressed in developing endosperm, whereas its paralogous gene OsHsp70cp-1 was mainly expressed in photosynthetic tissues. Ectopic expression of OsHsp70cp-1 under the control of OsHsp70cp-2 promoter rescued the mutant phenotype of flo11. Moreover, simultaneous knockdown of both OsHsp70cp genes resulted in white stripe leaves and opaque endosperm. BiFC and Co-IP assays revealed that OsHsp70cp-2 was associated with Tic complex. Taken together, OsHsp70cp-2 may regulate protein import into amyloplasts, which is essential for amyloplast development in rice.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Choque Térmico HSP70/genética , Oryza/genética , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Plastídeos/genética , Plastídeos/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
18.
Plant Cell Rep ; 37(12): 1667-1679, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30151559

RESUMO

KEY MESSAGE: Loss of function of a mitochondrial complex I subunit (OsNDUFA9) causes abnormal embryo development and affects starch synthesis by altering the expression of starch synthesis-related genes and proteins. Proton-pumping NADH: ubiquinone oxidoreductase (also called complex I) is thought to be the largest and most complicated enzyme of the mitochondrial respiratory chain. Mutations of complex I subunits have been revealed to link with a number of growth inhibitions in plants. However, the function of complex I subunits in rice remains unclear. Here, we isolated a rice floury endosperm mutant (named flo13) that was embryonic lethal and failed to germinate. Semi-thin sectioning analysis showed that compound starch grain development in the mutant was greatly impaired, leading to significantly compromised starch biosynthesis and decreased 1000-grain weight relative to the wild type. Map-based cloning revealed that FLO13 encodes an accessory subunit of complex I protein (designated as OsNDUFA9). A single nucleotide substitution (G18A) occurred in the first exon of OsNDUFA9, introducing a premature stop codon in the flo13 mutant gene. OsNDUFA9 was ubiquitously expressed in various tissues and the OsNDUFA9 protein was localized to the mitochondria. Quantitative RT-PCR and protein blotting indicated loss of function of OsNDUFA9 altered gene expression and protein accumulation associated with respiratory electron chain complex in the mitochondria. Moreover, transmission electron microscopic analysis showed that the mutant lacked obvious mitochondrial cristae structure in the mitochondria of endosperm cell. Our results demonstrate that the OsNDUFA9 subunit of complex I is essential for embryo development and starch synthesis in rice endosperm.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Oryza/embriologia , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Subunidades Proteicas/metabolismo , Sementes/embriologia , Sementes/metabolismo , Amido/biossíntese , Sequência de Bases , Clonagem Molecular , Endosperma/citologia , Endosperma/metabolismo , Endosperma/ultraestrutura , Regulação da Expressão Gênica de Plantas , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Mutação/genética , Oryza/ultraestrutura , Fenótipo , Proteínas de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Frações Subcelulares/metabolismo
19.
Rice (N Y) ; 11(1): 41, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30030651

RESUMO

BACKGROUND: Grain size, which is determined by grain length, grain width, and grain thickness, is an important determinant for grain yield in rice. Identification and characterization of new genes that are associated with grain size will be helpful for the improvement of grain yield in rice. RESULTS: We characterized the grain size mutant, larger grain size 1 (lgs1), derived from rice activation-tagged T-DNA insertion lines. Histological analysis showed that increased cell numbers in the longitudinal direction of spikelet hulls was responsible for the grain mutant phenotype in lgs1. Quantitative real-time PCR (qRT-PCR) analysis further showed that the expression levels of genes associated with the cell cycle in the young panicles of the lgs1 were higher than those in the wild type (WT), which might result in the increased cell numbers in lgs1 spikelet hulls. Insertion site analysis together with transgenic experiments confirmed that the lgs1 phenotype was caused by enhanced expression of truncated OsbHLH107, corresponding to the nucleotide (nt) 331-846 region (i.e., the transcriptional activation region of OsbHLH107) of the OsbHLH107 coding sequence (CDS). OsbHLH107 is a nucleus-localized bHLH transcription factor, which can form a homodimer with itself. Phylogenetic analysis showed that OsbHLH107 belonged to the same subfamily as OsPILs. OsPIL13 (OsPIL1) and OsPIL16 (APG) were reported to regulate grain size in rice. By transgenic experiments, we found that OsPIL11 could also regulate grain size. CONCLUSION: We concluded that OsbHLH107 and its homologs are important regulators of grain size development and might be useful for grain yield improvement in rice.

20.
Plant Cell ; 28(11): 2850-2865, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27803308

RESUMO

Coat protein complex II (COPII) mediates the first step of anterograde transport of newly synthesized proteins from the endoplasmic reticulum (ER) to other endomembrane compartments in eukaryotes. A group of evolutionarily conserved proteins (Sar1, Sec23, Sec24, Sec13, and Sec31) constitutes the basic COPII coat machinery; however, the details of how the COPII coat assembly is regulated remain unclear. Here, we report a protein transport mutant of rice (Oryza sativa), named glutelin precursor accumulation4 (gpa4), which accumulates 57-kD glutelin precursors and forms two types of ER-derived abnormal structures. GPA4 encodes the evolutionarily conserved membrane protein GOT1B (also known as GLUP2), homologous to the Saccharomyces cerevisiae GOT1p. The rice GOT1B protein colocalizes with Arabidopsis thaliana Sar1b at Golgi-associated ER exit sites (ERESs) when they are coexpressed in Nicotiana benthamiana Moreover, GOT1B physically interacts with rice Sec23, and both proteins are present in the same complex(es) with rice Sar1b. The distribution of rice Sar1 in the endomembrane system, its association with rice Sec23c, and the ERES organization pattern are significantly altered in the gpa4 mutant. Taken together, our results suggest that GOT1B plays an important role in mediating COPII vesicle formation at ERESs, thus facilitating anterograde transport of secretory proteins in plant cells.


Assuntos
Retículo Endoplasmático/metabolismo , Endosperma/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Retículo Endoplasmático/genética , Endosperma/genética , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Nicotiana/genética , Nicotiana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...