Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 3973, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803938

RESUMO

Neuromorphic perception systems inspired by biology have tremendous potential in efficiently processing multi-sensory signals from the physical world, but a highly efficient hardware element capable of sensing and encoding multiple physical signals is still lacking. Here, we report a spike-based neuromorphic perception system consisting of calibratable artificial sensory neurons based on epitaxial VO2, where the high crystalline quality of VO2 leads to significantly improved cycle-to-cycle uniformity. A calibration resistor is introduced to optimize device-to-device consistency, and to adapt the VO2 neuron to different sensors with varied resistance level, a scaling resistor is further incorporated, demonstrating cross-sensory neuromorphic perception component that can encode illuminance, temperature, pressure and curvature signals into spikes. These components are utilized to monitor the curvatures of fingers, thereby achieving hand gesture classification. This study addresses the fundamental cycle-to-cycle and device-to-device variation issues of sensory neurons, therefore promoting the construction of neuromorphic perception systems for e-skin and neurorobotics.


Assuntos
Computadores , Células Receptoras Sensoriais
2.
Nat Commun ; 11(1): 3399, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636385

RESUMO

As a key building block of biological cortex, neurons are powerful information processing units and can achieve highly complex nonlinear computations even in individual cells. Hardware implementation of artificial neurons with similar capability is of great significance for the construction of intelligent, neuromorphic systems. Here, we demonstrate an artificial neuron based on NbOx volatile memristor that not only realizes traditional all-or-nothing, threshold-driven spiking and spatiotemporal integration, but also enables dynamic logic including XOR function that is not linearly separable and multiplicative gain modulation among different dendritic inputs, therefore surpassing neuronal functions described by a simple point neuron model. A monolithically integrated 4 × 4 fully memristive neural network consisting of volatile NbOx memristor based neurons and nonvolatile TaOx memristor based synapses in a single crossbar array is experimentally demonstrated, showing capability in pattern recognition through online learning using a simplified δ-rule and coincidence detection, which paves the way for bio-inspired intelligent systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA