Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(8)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37630038

RESUMO

Compliant amplifying mechanisms are used widely in high-precision instruments driven by piezoelectric actuators, and the dynamic and static characteristics of these mechanisms are closely related to instrument performance. Although the majority of existing research has focused on analysis of their static characteristics, the dynamic characteristics of the mechanisms affect their response speeds directly. Therefore, this paper proposes a comprehensive theoretical model of compliant-amplifying mechanisms based on the multi-body system transfer matrix method to analyze the dynamic and static characteristics of these mechanisms. The effects of the main amplifying mechanism parameters on the displacement amplification ratio and the resonance frequency are analyzed comprehensively using the control variable method. An iterative optimization algorithm is also used to obtain specific parameters that meet the design requirements. Finally, simulation analyses and experimental verification tests are performed. The results indicate the feasibility of using the proposed theoretical compliant-amplifying mechanism model to describe the mechanism's dynamic and static characteristics, which represents a significant contribution to the design and optimization of compliant-amplifying mechanisms.

2.
Appl Opt ; 60(11): 3031-3043, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33983197

RESUMO

The surface figure precision, weight, and dynamic performance of spaceborne primary mirrors depend on mirror structure parameters, which are usually optimized to improve the overall performance. To realize rapid multi-objective design optimization of a primary mirror with multiple apertures, a fully parameterized primary mirror structure is established. A surrogate model based on a hybrid of improved particle swarm optimization (IPSO), adaptive genetic algorithm (IAGA), and optimized back propagation neural network (IPSO-IAGA-BPNN) is developed to replace optomechanical simulation with its high computational cost. In this model, a self-adaptive inertia weight and a modified genetic operator are introduced into the particle swarm optimization (PSO) and adaptive genetic algorithm (AGA), respectively. The connection parameters of BPNN are optimized by the IPSO-IAGA algorithm for global searching capability. Further, the proposed IPSO-IAGA-BPNN, based on a rapid multi-objective optimization framework for a fully parameterized primary mirror structure, is established. Moreover, in addition to the proposed IPSO-IAGA-BPNN model, the Kriging, RSM, BPNN, GA-BPNN, PSO-BPNN, and PSO-GA-BPNN models are also analyzed as contrast models. The comparison results indicate that the predicted value obtained by IPSO-IAGA-BPNN is superior to the six other surrogate models since its mean absolute percentage error is less than 3% and its R2 is more than 0.99. Finally, we present a Pareto-optimal primary mirror design and implement it through three optimization methods. The verification results show that the proposed method predicts mirror structural performance more accurately than existing surrogate-based methods, and promotes significantly superior computational efficiency compared to the conventional integration-based method.

3.
Rev Sci Instrum ; 87(8): 085006, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27587152

RESUMO

Tilt-positioning mechanisms are required in optical systems for diverse applications. Compared to electromagnetic tilt-positioning mechanisms, piezoelectric tilters are superior with regard to high positioning resolution, cost-effectiveness, and no electromagnetic interference issues. But their applications are limited by small motion ranges. To overcome this problem, a novel piezoelectric tilt-positioning mechanism is proposed and developed in this paper, aiming to achieve a large output range in compact size. Serving this purpose, flextensional piezoelectric actuators (FPAs) are employed in this mechanism and their optimal structure is pursued. The existing approach to model and analyze the structure of FPAs is not perfect, making it challenging to exactly characterize and optimize actuator performance for its applications. To address this problem, a hybrid-body model of the FPAs is developed and based on this model, a governing equation is established to exactly and comprehensively characterize their kinematic performance. This equation allows the application requirement to be readily related to the actuator design, enabling the optimization of tilter design and the actuators. Using the optimized parameters, an experimental prototype is fabricated. This specimen achieved more than 15 mrad of angular travel at a small size of 35 × 42 × 42 mm, and the error between the analytical model and the experiment was less than 5%. These results support the accuracy of the hybrid-body model and indicate that the proposed tilter is very promising for practical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA