Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Cell Tissue Res ; 389(3): 573-585, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35751703

RESUMO

Placental dysplasia increases the risk of recurrent spontaneous abortion (RSA). However, the underlying mechanism regulating placental development remains unclear. In this study, we showed that the expression of CDC42 was decreased in the villous tissue of RSA samples compared to healthy controls. Further examination demonstrated that CDC42 deficiency led to the differentiation of human trophoblast stem cells (hTSCs) and inhibited their proliferation. Genetic manipulation of YAP and EZRIN in hTSCs revealed that CDC42 regulates the stemness and proliferation of hTSCs; this is dependent on EZRIN, which translocates YAP into the nucleus. Moreover, the expression pattern of EZRIN, YAP, and Ki67 was also abnormal in the villous tissue of RSA samples, consistent with in vitro experiments. In summary, these findings suggest that the CDC42/EZRIN/YAP pathway plays an important role in placental development.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Placenta , Trofoblastos , Proteínas de Sinalização YAP/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proliferação de Células , Regulação para Baixo , Feminino , Humanos , Placenta/metabolismo , Gravidez , Células-Tronco , Trofoblastos/citologia , Trofoblastos/metabolismo
2.
Protein & Cell ; (12): 174-187, 2010.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-757717

RESUMO

The macrophage scavenger receptor SR-AI binds to host tissue debris to perform clearance and it binds to bacteria for phagocytosis. In addition, SR-AI modulates macrophage activation through cell signaling. However, investigation of SR-AI signaling on macrophages is complicated due to its promiscuous ligand specificity that overlaps with other macrophage receptors. Therefore, we expressed SR-AI on HEK 293T cells to investigate its ligand binding and signaling. On 293Tcells, SR-AI could respond to E. coli DH5α, leading to NF-κB activation and IL-8 production. However, this requires E. coli DH5α to be sensitized by fresh serum that is treated with heat-inactivation or complement C3 depletion. Anti-C3 antibody inhibits the binding of SR-AI to serum-sensitized DH5α and blocks DH5α stimulation of SR-AI signaling. Further analysis showed that SR-AI can directly bind to purified iC3b but not C3 or C3b. By mutagenesis, The SRCR domain of SR-AI was found to be essential in SR-AI binding to serum-sensitized DH5α. These results revealed a novel property of SR-AI as a complement receptor for iC3b-opsonized bacteria that can elicit cell signaling.


Assuntos
Humanos , Sequência de Aminoácidos , Proteínas de Transporte , Genética , Metabolismo , Complemento C3b , Metabolismo , Escherichia coli , Alergia e Imunologia , Células HEK293 , Ativação de Macrófagos , Dados de Sequência Molecular , Mutagênese , NF-kappa B , Genética , Metabolismo , Fagocitose , Fatores de Processamento de Serina-Arginina , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...