Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Chemistry ; 30(20): e202304033, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38190370

RESUMO

Supramolecular polymers offer tremendous potential to produce new "smart" materials, however, there remains a need to develop systems that are responsive to external stimuli. In this work, visible-light responsive hydrogen-bonded supramolecular polymers comprising photoresponsive supramolecular synthons (I-III) consisting of two hydrogen bonding motifs (HBMs) connected by a central ortho-tetrafluorinated azobenzene have been characterized by DOSY NMR and viscometry. Comparison of different hydrogen-bonding motifs reveals that assembly in the low and high concentration regimes is strongly influenced by the strength of association between the HBMs. I, Incorporating a triply hydrogen-bonded heterodimer, was found to exhibit concentration dependent switching between a monomeric pseudo-cycle and supramolecular oligomer through intermolecular hydrogen bonding interactions between the HBMs. II, Based on the same photoresponsive scaffold, and incorporating a quadruply hydrogen-bonded homodimer was found to form a supramolecular polymer which was dependent upon the ring-chain equilibrium and thus dependent upon both concentration and photochemical stimulus. Finally, III, incorporating a quadruply hydrogen-bonded heterodimer represents the first photoswitchable AB type hydrogen-bonded supramolecular polymer. Depending on the concentration and photostationary state, four different assemblies dominate for both monomers II and III, demonstrating the ability to control supramolecular assembly and physical properties triggered by light.

2.
J Am Chem Soc ; 144(50): 23127-23133, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36508201

RESUMO

Hydrogen-bonded supramolecular systems are usually characterized in solution through analysis of NMR data such as complexation-induced shifts and nuclear Overhauser effects (nOe). Routine direct detection of hydrogen bonding particularly in multicomponent mixtures, even with the aid of 2D NMR experiments for full assignment, is more challenging. We describe an elementary rapid 1H-15N HMQC NMR experiment which addresses these challenges without the need for complex pulse sequences. Under readily accessible conditions (243/263 K, 50 mM solutions) and natural 15N abundance, unambiguous assignment of 15N resonances facilitates direct detection of intra- and intermolecular hydrogen bonds in mechanically interlocked structures and quadruply hydrogen-bonded dimers─of dialkylaminoureidopyrimidinones, ureidopyrimidinones, and diamidonaphthyridines─in single or multicomponent mixtures to establish tautomeric configuration, conformation, and, to resolve self-sorted speciation.


Assuntos
Hidrogênio , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética/métodos , Conformação Proteica
3.
Nat Chem ; 14(2): 179-187, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34845345

RESUMO

Rotaxanes can display molecular chirality solely due to the mechanical bond between the axle and encircling macrocycle without the presence of covalent stereogenic units. However, the synthesis of such molecules remains challenging. We have discovered a combination of reaction partners that function as a chiral interlocking auxiliary to both orientate a macrocycle and, effectively, load it onto a new axle. Here we use these substrates to demonstrate the potential of a chiral interlocking auxiliary strategy for the synthesis of mechanically planar chiral rotaxanes by producing a range of examples with high enantiopurity (93-99% e.e.), including so-called 'impossible' rotaxanes whose axles lack any functional groups that would allow their direct synthesis by other means. Intriguingly, by varying the order of bond-forming steps, we can effectively choose which end of an axle the macrocycle is loaded onto, enabling the synthesis of both hands of a single target using the same reactions and building blocks.

5.
Angew Chem Int Ed Engl ; 60(21): 12066-12073, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33666324

RESUMO

We report the characterization of rotaxanes based on a carbazole-benzophenone thermally activated delayed fluorescence luminophore. We find that the mechanical bond leads to an improvement in key photophysical properties of the emitter, notably an increase in photoluminescence quantum yield and a decrease in the energy difference between singlet and triplet states, as well as fine tuning of the emission wavelength, a feat that is difficult to achieve when using covalently bound substituents. Computational simulations, supported by X-ray crystallography, suggest that this tuning of properties occurs due to weak interactions between the axle and the macrocycle that are enforced by the mechanical bond. This work highlights the benefits of using the mechanical bond to refine existing luminophores, providing a new avenue for emitter optimization that can ultimately increase the performance of these molecules.

6.
Angew Chem Int Ed Engl ; 57(45): 14806-14810, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30253008

RESUMO

Chiral interlocked molecules in which the mechanical bond provides the sole stereogenic unit are typically produced with no control over the mechanical stereochemistry. Here we report a stereoselective approach to mechanically planar chiral rotaxanes in up to 98:2 d.r. using a readily available α-amino acid-derived azide. Symmetrization of the covalent stereocenter yields a rotaxane in which the mechanical bond provides the only stereogenic element.

7.
Chem Commun (Camb) ; 54(77): 10874-10877, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30204157

RESUMO

A 68-membered macrocycle undergoes ultrasound-induced supramolecular gelation in acetonitrile. The sonogel shows a remarkable thermostability, indicating that self-assembly is mediated by exceptionally robust non-covalent interactions. Model compounds indicate that the macrocyclic topology is essential for gelation to occur.

8.
J Am Chem Soc ; 139(19): 6654-6662, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28470070

RESUMO

Linear oligomers equipped with complementary H-bond donor (D) and acceptor (A) sites can interact via intermolecular H-bonds to form duplexes or fold via intramolecular H-bonds. These competing equilibria have been quantified using NMR titration and dilution experiments for seven systems featuring different recognition sites and backbones. For all seven architectures, duplex formation is observed for homo-sequence 2-mers (AA·DD) where there are no competing folding equilibria. The corresponding hetero-sequence AD 2-mers also form duplexes, but the observed self-association constants are strongly affected by folding equilibria in the monomeric states. When the backbone is flexible (five or more rotatable bonds separating the recognition sites), intramolecular H-bonding is favored, and the folded state is highly populated. For these systems, the stability of the AD·AD duplex is 1-2 orders of magnitude lower than that of the corresponding AA·DD duplex. However, for three architectures which have more rigid backbones (fewer than five rotatable bonds), intramolecular interactions are not observed, and folding does not compete with duplex formation. These systems are promising candidates for the development of longer, mixed-sequence synthetic information molecules that show sequence-selective duplex formation.

9.
Org Biomol Chem ; 12(9): 1440-7, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24442274

RESUMO

The association constants for formation of 1 : 1 complexes between five different imidazole ligands and eight different porphyrins have been measured by UV/vis titration experiments in two different solvents, toluene and 1,1,2,2-tetrachloroethane (TCE). Ligands equipped with H-bond acceptors (ester or amide) and porphyrins equipped with H-bond donors (phenol) can make H-bonds in addition to the zinc-nitrogen coordination interaction. The free energy contributions of these H-bonds to the overall stabilities of the complexes were determined using chemical double mutant cycles. Amide-phenol H-bonds contribute up to 5 kJ mol(-1) to the free energy change on complexation, and ester-phenol H-bonds contribute up to 3 kJ mol(-1). Porphyrin-ligand combinations with poor geometric complementarity do not make detectable H-bonding interactions. Effective molarities (EM) for the formation of H-bonds in the complexes were estimated by comparing the equilibrium constants for formation of the intramolecular interaction with the corresponding intermolecular interaction: the values are between 3 mM and 200 mM, which is comparable to previous results obtained for porphyrin-pyridine complexes. The values of EM measured for flexible and rigid ligand systems are comparable. This suggests that there is a trade off between restriction of conformational mobility in the flexible ligands and geometric strain in the rigid ligands, which results in similar binding affinities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...