Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Anal Chim Acta ; 1288: 342144, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38220279

RESUMO

A new hydrophilic interaction liquid chromatography - mass spectrometry method is developed for low-abundant phospholipids and sphingolipids in human plasma and serum. The optimized method involves the Cogent Silica type C hydride column, the simple sample preparation by protein precipitation, and the removal of highly abundant lipid classes using the postcolumn valve directed to waste during two elution windows. The method allows a highly confident and sensitive identification of low-abundant lipid classes in human plasma (246 lipid species from 24 lipid subclasses) based on mass accuracy and retention dependencies in both polarity modes. The method is validated for quantitation using two internal standards (if available) for each lipid class and applied to human plasma and serum samples obtained from patients with pancreatic ductal adenocarcinoma (PDAC), healthy controls, and NIST SRM 1950. Multivariate data analysis followed by various statistical projection methods is used to determine the most dysregulated lipids. Significant downregulation is observed for lysophospholipids with fatty acyl composition 16:0, 18:0, 18:1, and 18:2. Distinct trends are observed for phosphatidylethanolamines (PE) in relation to the bonding type of fatty acyls, where most PE with acyl bonds are upregulated, while ether/plasmenyl PE are downregulated. For the sphingolipid category, sphingolipids with very long N-acyl chains are downregulated, while sphingolipids with shorter N-acyl chains were upregulated in PDAC. These changes are consistently observed for various classes of sphingolipids, ranging from ceramides to glycosphingolipids, indicating a possible metabolic disorder in ceramide biosynthesis caused by PDAC.


Assuntos
Neoplasias Pancreáticas , Esfingolipídeos , Humanos , Esfingolipídeos/análise , Plasma/química , Soro , Ceramidas
2.
Anal Bioanal Chem ; 415(5): 935-951, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36598539

RESUMO

Direct infusion of lipid extracts into the ion source of a mass spectrometer is a well-established method for lipid analysis. In most cases, nanofluidic devices are used for sample introduction. However, flow injection analysis (FIA) based on sample infusion from a chromatographic pump can offer a simple alternative to shotgun-based approaches. Here, we describe important modification of a method based on FIA and tandem mass spectrometry (MS/MS). We focus on minimizing contamination of the FIA/MS both to render the lipidomic platform more robust and to increase its capacity and applicability for long-sequence measurements required in clinical applications. Robust validation of the developed method confirms its suitability for lipid quantitation in human plasma analysis. Measurements of standard human plasma reference material (NIST SRM 1950) and a set of plasma samples collected from kidney cancer patients and from healthy volunteers yielded highly similar results between FIA-MS/MS and ultra-high-performance supercritical fluid chromatography (UHPSFC)/MS, thereby demonstrating that all modifications have practically no effect on the statistical output. Newly modified FIA-MS/MS allows for the quantitation of 141 lipid species in plasma (11 major lipid classes) within 5.7 min. Finally, we tested the method in a clinical laboratory of the General University Hospital in Prague. In the clinical setting, the method capacity reached 257 samples/day. We also show similar performance of the classification models trained based on the results obtained in clinical settings and the analytical laboratory at the University of Pardubice. Together, these findings demonstrate the high potential of the modified FIA-MS/MS for application in clinical laboratories to measure plasma and serum lipid profiles.


Assuntos
Lipidômica , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Lipidômica/métodos , Análise de Injeção de Fluxo , Plasma/química , Lipídeos/análise
3.
J Biol Chem ; 299(3): 102923, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36681125

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most common causes of cancer-related deaths worldwide, accounting for 90% of primary pancreatic tumors with an average 5-year survival rate of less than 10%. PDAC exhibits aggressive biology, which, together with late detection, results in most PDAC patients presenting with unresectable, locally advanced, or metastatic disease. In-depth lipid profiling and screening of potential biomarkers currently appear to be a promising approach for early detection of PDAC or other cancers. Here, we isolated and characterized complex glycosphingolipids (GSL) from normal and tumor pancreatic tissues of patients with PDAC using a combination of TLC, chemical staining, carbohydrate-recognized ligand-binding assay, and LC/ESI-MS2. The major neutral GSL identified were GSL with the terminal blood groups A, B, H, Lea, Leb, Lex, Ley, P1, and PX2 determinants together with globo- (Gb3 and Gb4) and neolacto-series GSL (nLc4 and nLc6). We also revealed that the neutral GSL profiles and their relative amounts differ between normal and tumor tissues. Additionally, the normal and tumor pancreatic tissues differ in type 1/2 core chains. Sulfatides and GM3 gangliosides were the predominant acidic GSL along with the minor sialyl-nLc4/nLc6 and sialyl-Lea/Lex. The comprehensive analysis of GSL in human PDAC tissues extends the GSL coverage and provides an important platform for further studies of GSL alterations; therefore, it could contribute to the development of new biomarkers and therapeutic approaches.


Assuntos
Glicoesfingolipídeos , Neoplasias Pancreáticas , Humanos , Cromatografia Líquida , Cromatografia em Camada Fina , Gangliosídeos/química , Glicoesfingolipídeos/análise , Glicoesfingolipídeos/química , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/fisiopatologia , Sulfoglicoesfingolipídeos/química , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/fisiopatologia , Espectrometria de Massas em Tandem , Biomarcadores Tumorais/metabolismo
4.
Cancers (Basel) ; 14(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36230546

RESUMO

PURPOSE: RCC, the most common type of kidney cancer, is associated with high mortality. A non-invasive diagnostic test remains unavailable due to the lack of RCC-specific biomarkers in body fluids. We have previously described a significantly altered profile of sulfatides in RCC tumor tissues, motivating us to investigate whether these alterations are reflected in collectible body fluids and whether they can enable RCC detection. METHODS: We collected and further analyzed 143 plasma, 100 urine, and 154 tissue samples from 155 kidney cancer patients, together with 207 plasma and 70 urine samples from 214 healthy controls. RESULTS: For the first time, we show elevated concentrations of lactosylsulfatides and decreased levels of sulfatides with hydroxylated fatty acyls in body fluids of RCC patients compared to controls. These alterations are emphasized in patients with the advanced tumor stage. Classification models are able to distinguish between controls and patients with RCC. In the case of all plasma samples, the AUC for the testing set was 0.903 (0.844-0.954), while for urine samples it was 0.867 (0.763-0.953). The models are able to efficiently detect patients with early- and late-stage RCC based on plasma samples as well. The test set sensitivities were 80.6% and 90%, and AUC values were 0.899 (0.832-0.952) and 0.981 (0.956-0.998), respectively. CONCLUSION: Similar trends in body fluids and tissues indicate that RCC influences lipid metabolism, and highlight the potential of the studied lipids for minimally-invasive cancer detection, including patients with early tumor stages, as demonstrated by the predictive ability of the applied classification models.

5.
Dalton Trans ; 51(36): 13703-13715, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36001067

RESUMO

Two catecholase-like biomimetic catalysts, namely, two dinuclear copper complexes [Cu2(L1)(OH)(H2O)(EtOH)][ClO4]2 (C1) and [Cu2Ac2O(L1)ClO4] (C2) with the 2,6-bis(4-methyl piperazin-1-yl-methyl)-4-formyl-phenoxy ligand (L1) together with the mononuclear complex Cu(ClO4)2(L2) (C3) containing ligand 1,2-(C5H4N-6-OCH3-2-CHN)2CH2CH2 (L2), were synthesized. Their catalytic pathways were investigated and compared. The evaluation of the catalytic activity of compound C1 (and C2, C3) using the Michaelis-Menten model was represented by values of KM = 272.93 (223.02; 1616) µmol L-1 and Vmax of 0.981 (1.617; 1.689) µmol L-1 s-1. The role of water content in the solvent is also discussed. The dinuclear complexes C1 and C2 were found to be more efficient catalysts than mononuclear complex C3. The mode of catalytic action was characterized via cyclic voltammetry, spectrophotometry, and UV-Vis spectroelectrochemistry. The catalytic mechanism of 3,5-di-tert butyl catechol oxidation in the presence of oxygen was proposed. The reaction circle was proved by the confirmation of the chemical reversibility of complex reduction. The advantage of the in situ spectroelectrochemical measurement enabled to control the reduction of quinone formed by the chemical reaction of catechol with oxygen in solution. At this step, the simultaneous change in the absorption spectrum indicated a change in the copper redox state of the catalyst.


Assuntos
Catecol Oxidase , Cobre , Biomimética , Catecol Oxidase/química , Catecóis/química , Cobre/química , Cristalografia por Raios X , Ligantes , Estrutura Molecular , Oxirredução , Oxigênio , Quinonas , Solventes , Água/química
6.
Nat Commun ; 13(1): 124, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013261

RESUMO

Pancreatic cancer has the worst prognosis among all cancers. Cancer screening of body fluids may improve the survival time prognosis of patients, who are often diagnosed too late at an incurable stage. Several studies report the dysregulation of lipid metabolism in tumor cells, suggesting that changes in the blood lipidome may accompany tumor growth. Here we show that the comprehensive mass spectrometric determination of a wide range of serum lipids reveals statistically significant differences between pancreatic cancer patients and healthy controls, as visualized by multivariate data analysis. Three phases of biomarker discovery research (discovery, qualification, and verification) are applied for 830 samples in total, which shows the dysregulation of some very long chain sphingomyelins, ceramides, and (lyso)phosphatidylcholines. The sensitivity and specificity to diagnose pancreatic cancer are over 90%, which outperforms CA 19-9, especially at an early stage, and is comparable to established diagnostic imaging methods. Furthermore, selected lipid species indicate a potential as prognostic biomarkers.


Assuntos
Biomarcadores Tumorais/sangue , Ceramidas/sangue , Metabolismo dos Lipídeos/genética , Lisofosfatidilcolinas/sangue , Neoplasias Pancreáticas/diagnóstico , Esfingomielinas/sangue , Biomarcadores Tumorais/genética , Antígeno CA-19-9/sangue , Estudos de Casos e Controles , Feminino , Humanos , Lipidômica/métodos , Masculino , Análise Multivariada , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Modelos de Riscos Proporcionais , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Neoplasias Pancreáticas
7.
Anal Bioanal Chem ; 414(1): 319-331, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34244835

RESUMO

Reversed-phase ultrahigh-performance liquid chromatography-mass spectrometry (RP-UHPLC/MS) method was developed with the aim to unambiguously identify a large number of lipid species from multiple lipid classes in human plasma. The optimized RP-UHPLC/MS method employed the C18 column with sub-2-µm particles with the total run time of 25 min. The chromatographic resolution was investigated with 42 standards from 18 lipid classes. The UHPLC system was coupled to high-resolution quadrupole-time-of-flight (QTOF) mass analyzer using electrospray ionization (ESI) measuring full-scan and tandem mass spectra (MS/MS) in positive- and negative-ion modes with high mass accuracy. Our identification approach was based on m/z values measured with mass accuracy within 5 ppm tolerance in the full-scan mode, characteristic fragment ions in MS/MS, and regularity in chromatographic retention dependences for individual lipid species, which provides the highest level of confidence for reported identifications of lipid species including regioisomeric and other isobaric forms. The graphs of dependences of retention times on the carbon number or on the number of double bond(s) in fatty acyl chains were constructed to support the identification of lipid species in homologous lipid series. Our list of identified lipid species is also compared with previous publications investigating human blood samples by various MS-based approaches. In total, we have reported more than 500 lipid species representing 26 polar and nonpolar lipid classes detected in NIST Standard reference material 1950 human plasma.


Assuntos
Cromatografia Líquida/métodos , Lipídeos/sangue , Lipídeos/química , Espectrometria de Massas/métodos , Humanos
9.
Sci Rep ; 11(1): 20322, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645896

RESUMO

Early detection of cancer is one of the unmet needs in clinical medicine. Peripheral blood analysis is a preferred method for efficient population screening, because blood collection is well embedded in clinical practice and minimally invasive for patients. Lipids are important biomolecules, and variations in lipid concentrations can reflect pathological disorders. Lipidomic profiling of human plasma by the coupling of ultrahigh-performance supercritical fluid chromatography and mass spectrometry is investigated with the aim to distinguish patients with breast, kidney, and prostate cancers from healthy controls. The mean sensitivity, specificity, and accuracy of the lipid profiling approach were 85%, 95%, and 92% for kidney cancer; 91%, 97%, and 94% for breast cancer; and 87%, 95%, and 92% for prostate cancer. No association of statistical models with tumor stage is observed. The statistically most significant lipid species for the differentiation of cancer types studied are CE 16:0, Cer 42:1, LPC 18:2, PC 36:2, PC 36:3, SM 32:1, and SM 41:1 These seven lipids represent a potential biomarker panel for kidney, breast, and prostate cancer screening, but a further verification step in a prospective study has to be performed to verify clinical utility.


Assuntos
Neoplasias da Mama/metabolismo , Mama/metabolismo , Rim/metabolismo , Lipidômica , Lipídeos/química , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Adulto , Idoso , Área Sob a Curva , Biomarcadores Tumorais/metabolismo , Estudos de Casos e Controles , Cromatografia com Fluido Supercrítico , Detecção Precoce de Câncer , Feminino , Regulação Neoplásica da Expressão Gênica , Heparina/química , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Modelos Estatísticos , Estudos Prospectivos , Curva ROC , Reprodutibilidade dos Testes , Estudos Retrospectivos , Adulto Jovem
10.
Anal Chem ; 93(41): 13835-13843, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34623138

RESUMO

The chemical derivatization of multiple lipid classes was developed using benzoyl chloride as a nonhazardous derivatization agent at ambient conditions. The derivatization procedure was optimized with standards for 4 nonpolar and 8 polar lipid classes and measured by reversed-phase ultrahigh-performance liquid chromatography-tandem mass spectrometry. The derivatization and nonderivatization approaches were compared on the basis of the calibration curves of 22 internal standards from 12 lipid classes. The new method decreased the limit of detection 9-fold for monoacylglycerols (0.9-1.0 nmol/mL), 6.5-fold for sphingoid base (0.2 nmol/mL), and 3-fold for diacylglycerols (0.9 nmol/mL). The sensitivity expressed by the ratio of calibration slopes was increased 2- to 10-fold for almost all investigated lipid classes and even more than 100-fold for monoacylglycerols. Moreover, the benzoylation reaction produces a more stable derivative of cholesterol in comparison to the easily in-source fragmented nonderivatized form and enabled the detection of fatty acids in a positive ion mode, which does not require polarity switching as for the nonderivatized form. The intralaboratory comparison with an additional operator without previous derivatization experiences shows the simplicity, robustness, and reproducibility. The stability of the derivatives was determined by periodical measurements during a one month period and five freeze/thaw cycles. The fully optimized derivatization method was applied to human plasma, which allows the detection of 169 lipid species from 11 lipid classes using the high confidence level of identification in reversed-phase (RP)-ultra high performance liquid chromatography (UHPLC)/mass spectrometry (MS). Generally, we detected more lipid species for monoacylglycerols, diacylglycerols, and sphingoid bases in comparison with previously reported papers without the derivatization.


Assuntos
Lipídeos , Espectrometria de Massas em Tandem , Benzoatos , Cromatografia Líquida de Alta Pressão , Humanos , Reprodutibilidade dos Testes
11.
Bioinformatics ; 37(23): 4591-4592, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34498026

RESUMO

SUMMARY: We present the LipidQuant 1.0 tool for automated data processing workflows in lipidomic quantitation based on lipid class separation coupled with high-resolution mass spectrometry. Lipid class separation workflows, such as hydrophilic interaction liquid chromatography or supercritical fluid chromatography, should be preferred in lipidomic quantitation due to the coionization of lipid class internal standards with analytes from the same class. The individual steps in the LipidQuant workflow are explained, including lipid identification, quantitation, isotopic correction and reporting results. We show the application of LipidQuant data processing to a small cohort of human serum samples. AVAILABILITY AND IMPLEMENTATION: The LipidQuant 1.0 is freely available at Zenodo https://doi.org/10.5281/zenodo.5151201 and https://holcapek.upce.cz/lipidquant.php. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Lipidômica , Lipídeos , Humanos , Fluxo de Trabalho , Espectrometria de Massas/métodos , Cromatografia Líquida , Lipídeos/análise
13.
Chemistry ; 27(52): 13096-13097, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34363422

RESUMO

Invited for the cover of this issue are Zoltán Benko, Libor Dostál and co-workers at the University of Pardubice and the Budapest University of Technology and Economics. The image depicts signs for the two different pathways representing the two differing reaction types which were clearly observed for 2,1-benzazaphosphole. Read the full text of the article at 10.1002/chem.202101686.

14.
Chemistry ; 27(52): 13149-13160, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34096106

RESUMO

The titled 2,1-benzazaphosphole (1) (i. e. ArP, where Ar=2-(DippN=CH)C6 H4 , Dipp=2,6-iPr2 C6 H3 ) showed a spectacular reactivity behaving both as a reactive heterodiene in hetero-Diels-Alder (DA) reactions or as a hidden phosphinidene in the coordination toward selected transition metals (TMs). Thus, 1 reacts with electron-deficient alkynes RC≡CR (R=CO2 Me, C5 F4 N) giving 1-phospha-1,4-dihydro-iminonaphthalenes 2 and 3, that undergo hydrogen migration producing 1-phosphanaphthalenes 4 and 5. Compound 1 is also able to activate the C=C double bond in selected N-alkyl/aryl-maleimides RN(C(O)CH)2 (R=Me, tBu, Ph) resulting in the addition products 7-9 with bridged bicyclic [2.2.1] structures. The binding of the maleimides to 1 is semi-reversible upon heating. By contrast, when 1 was treated with selected TM complexes, it serves as a 4e donor bridging two TMs thus producing complexes [µ-ArP(AuCl)2 ] (10), [(µ-ArP)4 Ag4 ][X]4 (X=BF4 (11), OTf (12)) and [µ-ArP(Co2 (CO)6 )] (13). The structure and electron distribution of the starting material 1 as well as of other compounds were also studied from the theoretical point of view.

15.
Talanta ; 231: 122367, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33965032

RESUMO

The lipidomic research is currently devoting considerable effort to the harmonization that should enable the generation of comparable and accurate quantitative lipidomic data across different laboratories and regardless of the mass spectrometry-based platform used. In the present study, we systematically investigate the effects of the experimental setup on quantitative lipidomics data obtained by two lipid class separation approaches, hydrophilic interaction liquid chromatography (HILIC) and ultrahigh-performance supercritical fluid chromatography (UHPSFC), coupled to two different quadrupole - time of flight (QTOF) mass spectrometers from the same vendor. This approach is applied for measurements of 268 human plasma samples of healthy volunteers and renal cell carcinoma patients resulting in four data sets. We investigate and visualize differences among these data sets by multivariate data analysis methods, such as principal component analysis (PCA), orthogonal partial least square discriminant analysis (OPLS-DA), box plots, and logarithmic correlations of molar concentrations of individual lipid species. The results indicate that even measurements in the same laboratory for the same samples using different analytical platforms may yield slight variations in the molar concentrations determined. The normalization to a reference sample with defined lipid concentrations can further diminish these small differences, resulting in highly homogenous molar concentrations of individual lipid species. This strategy indicates a potential approach towards the reporting of comparable quantitative results independent from the quantitative approach and mass spectrometer used, which is important for a wider acceptance of lipidomics data in various biomarker inter-laboratory studies and ring trials.


Assuntos
Cromatografia com Fluido Supercrítico , Lipidômica , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Humanos , Interações Hidrofóbicas e Hidrofílicas , Laboratórios , Espectrometria de Massas
16.
Metabolites ; 11(3)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652716

RESUMO

Glycosphingolipids (GSL) represent a highly heterogeneous class of lipids with many cellular functions, implicated in a wide spectrum of human diseases. Their isolation, detection, and comprehensive structural analysis is a challenging task due to the structural diversity of GSL molecules. In this work, GSL subclasses are isolated from human plasma using an optimized monophasic ethanol-water solvent system capable to recover a broad range of GSL species. Obtained deproteinized plasma is subsequently purified and concentrated by C18-based solid-phase extraction (SPE). The hydrophilic interaction liquid chromatography coupled to electrospray ionization linear ion trap tandem mass spectrometry (HILIC-ESI-LIT-MS/MS) is used for GSL analysis in the human plasma extract. Our results provide an in-depth profiling and structural characterization of glycosphingolipid and some phospholipid subclasses identified in the human plasma based on their retention times and the interpretation of tandem mass spectra. The structural composition of particular lipid species is readily characterized based on the detailed interpretation of mass spectrometry (MS) and tandem mass spectrometry (MS/MS) spectra and further confirmed by specific fragmentation behavior following predictable patterns, which yields to the unambiguous identification of 154 GSL species within 7 lipid subclasses and 77 phospholipids representing the highest number of GSL species ever reported in the human plasma. The developed HILIC-ESI-MS/MS method can be used for further clinical and biological research of GSL in the human blood or other biological samples.

17.
Anal Chim Acta ; 1137: 74-84, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-33153611

RESUMO

Effects of blood collection tubes, the time period, the sample origin, and the method used on the lipidomic profile are investigated by ultrahigh-performance supercritical fluid chromatography - mass spectrometry (UHPSFC/MS) and hydrophilic interaction liquid chromatography ultrahigh-performance liquid chromatography - mass spectrometry (HILIC-UHPLC/MS). Heparin plasma samples have been obtained from 99 healthy volunteers at three time points separated by six-month intervals together with one collection for EDTA plasma and serum. Furthermore, lipid concentrations in heparin plasma collected at two different sites are compared. 171 lipid species from eight lipid classes are quantified with UHPSFC/MS, and 122 lipid species from four lipid classes with HILIC-UHPLC/MS. The accuracy of both methods is monitored by the quantitation error using two internal standards (IS) per individual lipid classes. No significant differences in lipid profiles are observed for different time points and types of collection tubes (heparin plasma, EDTA plasma, and serum). Most pronounced lipid concentration differences are observed for the comparison of NIST SRM 1950 human plasma and mean lipid concentrations of the investigated cohort. Furthermore, differences in lipid concentrations are observed between employed methods (UHPSFC/MS vs. HILIC-UHPLC/MS), which can be compensated by the normalization using NIST SRM 1950 human plasma used as the quality control sample.


Assuntos
Cromatografia com Fluido Supercrítico , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Humanos , Lipídeos , Espectrometria de Massas
18.
Anal Bioanal Chem ; 412(10): 2375-2388, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32078000

RESUMO

Ultrahigh-performance supercritical fluid chromatography-mass spectrometry (UHPSFC/MS) has a great potential for the high-throughput lipidomic quantitation of biological samples; therefore, the full optimization and method validation of UHPSFC/MS is compared here with ultrahigh-performance liquid chromatography-mass spectrometry (UHPLC/MS) in hydrophilic interaction liquid chromatography (HILIC) mode as the second powerful technique for the lipid class separation. First, the performance of six common extraction protocols is investigated, where the Folch procedure yields the best results with regard to recovery rate, matrix effect, and precision. Then, the full optimization and analytical validation for eight lipid classes using UHPSFC/MS and HILIC-UHPLC/MS methods are performed for the same sample set and applied for the lipidomic characterization of pooled samples of human plasma, human serum, and NIST SRM 1950 human plasma. The choice of appropriate internal standards (IS) for individual lipid classes has a key importance for reliable quantitative workflows illustrated by the selectivity while validation and the calculation of the quantitation error using multiple internal standards per lipid class. Validation results confirm the applicability of both methods, but UHPSFC/MS provides some distinct advantages, such as the successful separation of both non-polar and polar lipid classes unlike to HILIC-UHPLC/MS, shorter total run times (8 vs. 10.5 min), and slightly higher robustness. Various types of correlations between methods (UHPSFC/MS and HILIC-UHPLC/MS), biological material (plasma and serum), IS (laboratory and commercially mixtures), and literature data on the standard reference material show the intra- and inter-laboratory comparison in the quantitation of lipid species from eight lipid classes, the concentration differences in serum and plasma as well as the applicability of non-commercially available internal standard mixtures for lipid quantitation.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Cromatografia com Fluido Supercrítico/métodos , Lipidômica/métodos , Lipídeos/química , Espectrometria de Massas/métodos , Humanos , Lipídeos/sangue , Plasma/química , Soro/química
19.
Artigo em Inglês | MEDLINE | ID: mdl-31978556

RESUMO

Ultrahigh-performance supercritical fluid chromatography - mass spectrometry (UHPSFC/MS), ultrahigh-performance liquid chromatography - mass spectrometry (UHPLC/MS), and matrix-assisted laser desorption/ionization (MALDI) - MS techniques were used for the lipidomic characterization of exosomes isolated from human plasma. The high-throughput methods UHPSFC/MS and UHPLC/MS using a silica-based column containing sub-2 µm particles enabled the lipid class separation and the quantitation based on exogenous class internal standards in <7 minute run time. MALDI provided the complementary information on anionic lipid classes, such as sulfatides. The nontargeted analysis of 12 healthy volunteers was performed, and absolute molar concentration of 244 lipids in exosomes and 191 lipids in plasma belonging to 10 lipid classes were quantified. The statistical evaluation of data included principal component analysis, orthogonal partial least square discriminant analysis, S-plots, p-values, T-values, fold changes, false discovery rate, box plots, and correlation plots, which resulted in the information on lipid changes in exosomes in comparison to plasma. The major changes were detected in the composition of triacylglycerols, diacylglycerols, phosphatidylcholines, and lysophosphatidylcholines, whereby sphingomyelins, phosphatidylinositols, and sulfatides showed rather similar profiles in both biological matrices.


Assuntos
Exossomos/metabolismo , Metabolismo dos Lipídeos , Lipidômica/métodos , Adulto , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia com Fluido Supercrítico/métodos , Diglicerídeos/sangue , Diglicerídeos/isolamento & purificação , Diglicerídeos/metabolismo , Exossomos/química , Voluntários Saudáveis , Humanos , Lisofosfatidilcolinas/sangue , Lisofosfatidilcolinas/isolamento & purificação , Lisofosfatidilcolinas/metabolismo , Masculino , Pessoa de Meia-Idade , Fosfatidilcolinas/sangue , Fosfatidilcolinas/isolamento & purificação , Fosfatidilcolinas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Triglicerídeos/sangue , Triglicerídeos/isolamento & purificação , Triglicerídeos/metabolismo
20.
Dalton Trans ; 48(31): 11912-11920, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31312820

RESUMO

The reaction of the antimony(i) compound ArSb (1) (where Ar = C6H3-2,6-(CH[double bond, length as m-dash]NtBu)2) with various dimeric allyl palladium(ii) complexes [Pd(η3-allyl)(µ-X)]2 (where allyl = C3H5 or C3H4Me; X = Cl or CF3CO2) in a 1 : 1 stoichiometric ratio gave unique complexes with the µ-ArSb moiety bridging two palladium fragments, i.e. [{Pd(η3-C3H5)Cl}2(µ-ArSb)] (2), [{Pd(η3-C3H4Me)Cl}2(µ-ArSb)] (3) and [{Pd(η3-C3H5)(CF3CO2)}2(µ-ArSb)] (4). Compound 1 serves formally as a 4e donor in 2-4. The treatment of 2 with another equivalent of ArSb led to the formation of the [Pd(η3-C3H5)(Cl)(µ-ArSb)] complex (5), proving that 1 is able to function as a 2e donor in target complexes as well. The structures of 2-5 were described in detail both in solution (NMR and mass spectrometry) and in the solid state (single crystal X-ray diffraction analysis). DFT methods were used to compare bonding in the 1 : 1 (5) and 1 : 2 (2) complexes. Furthermore, a comprehensive 121Sb Mössbauer spectroscopic investigation of complexes 2 and 5 along with parent ArSbCl2 (6) and 1 was performed. For comparison, complexes [Fe(CO)4(ArSb)] (7) and [Mo(CO)5(ArSb)] (8) were also included in this study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...