Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(11)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37998187

RESUMO

By employing Tsallis' extensive but non-additive δ-entropy, we formulate the first two laws of thermodynamics for gravitating systems. By invoking Carathéodory's principle, we pay particular attention to the integrating factor for the heat one-form. We show that the latter factorizes into the product of thermal and entropic parts, where the entropic part cannot be reduced to a constant, as is the case in conventional thermodynamics, due to the non-additive nature of Sδ. The ensuing two laws of thermodynamics imply a Tsallis cosmology, which is then applied to a radiation-dominated universe to address the Big Bang nucleosynthesis and the relic abundance of cold dark matter particles. It is demonstrated that the Tsallis cosmology with the scaling exponent δ∼1.499 (or equivalently, the anomalous dimension Δ∼0.0013) consistently describes both the abundance of cold dark matter particles and the formation of primordial light elements, such as deuterium 2H and helium 4He. Salient issues, including the zeroth law of thermodynamics for the δ-entropy and the lithium 7Li problem, are also briefly discussed.

2.
Entropy (Basel) ; 24(7)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35885081

RESUMO

Uncovering causal interdependencies from observational data is one of the great challenges of a nonlinear time series analysis. In this paper, we discuss this topic with the help of an information-theoretic concept known as Rényi's information measure. In particular, we tackle the directional information flow between bivariate time series in terms of Rényi's transfer entropy. We show that by choosing Rényi's parameter α, we can appropriately control information that is transferred only between selected parts of the underlying distributions. This, in turn, is a particularly potent tool for quantifying causal interdependencies in time series, where the knowledge of "black swan" events, such as spikes or sudden jumps, are of key importance. In this connection, we first prove that for Gaussian variables, Granger causality and Rényi transfer entropy are entirely equivalent. Moreover, we also partially extend these results to heavy-tailed α-Gaussian variables. These results allow establishing a connection between autoregressive and Rényi entropy-based information-theoretic approaches to data-driven causal inference. To aid our intuition, we employed the Leonenko et al. entropy estimator and analyzed Rényi's information flow between bivariate time series generated from two unidirectionally coupled Rössler systems. Notably, we find that Rényi's transfer entropy not only allows us to detect a threshold of synchronization but it also provides non-trivial insight into the structure of a transient regime that exists between the region of chaotic correlations and synchronization threshold. In addition, from Rényi's transfer entropy, we could reliably infer the direction of coupling and, hence, causality, only for coupling strengths smaller than the onset value of the transient regime, i.e., when two Rössler systems are coupled but have not yet entered synchronization.

3.
Entropy (Basel) ; 23(10)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34682091

RESUMO

During the last few decades, the notion of entropy has become omnipresent in many scientific disciplines, ranging from traditional applications in statistical physics and chemistry, information theory, and statistical estimation to more recent applications in biology, astrophysics, geology, financial markets, or social networks [...].

4.
Entropy (Basel) ; 23(3)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809011

RESUMO

In this paper, we generalize the notion of Shannon's entropy power to the Rényi-entropy setting. With this, we propose generalizations of the de Bruijn identity, isoperimetric inequality, or Stam inequality. This framework not only allows for finding new estimation inequalities, but it also provides a convenient technical framework for the derivation of a one-parameter family of Rényi-entropy-power-based quantum-mechanical uncertainty relations. To illustrate the usefulness of the Rényi entropy power obtained, we show how the information probability distribution associated with a quantum state can be reconstructed in a process that is akin to quantum-state tomography. We illustrate the inner workings of this with the so-called "cat states", which are of fundamental interest and practical use in schemes such as quantum metrology. Salient issues, including the extension of the notion of entropy power to Tsallis entropy and ensuing implications in estimation theory, are also briefly discussed.

5.
Phys Rev E ; 101(4-1): 042126, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32422799

RESUMO

We propose a unified framework for both Shannon-Khinchin and Shore-Johnson axiomatic systems. We do it by rephrasing Shannon-Khinchine axioms in terms of generalized arithmetics of Kolmogorov and Nagumo. We prove that the two axiomatic schemes yield identical classes of entropic functionals-the Uffink class of entropies. This allows to re-establish the entropic parallelism between information theory and statistical inference that has seemed to be "broken" by the use of non-Shannonian entropies.

6.
Philos Trans A Math Phys Eng Sci ; 378(2170): 20190171, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32223412

RESUMO

Even though irreversibility is one of the major hallmarks of any real-life process, an actual understanding of irreversible processes remains still mostly semi-empirical. In this paper, we formulate a thermodynamic uncertainty principle for irreversible heat engines operating with an ideal gas as a working medium. In particular, we show that the time needed to run through such an irreversible cycle multiplied by the irreversible work lost in the cycle is bounded from below by an irreducible and process-dependent constant that has the dimension of an action. The constant in question depends on a typical scale of the process and becomes comparable to Planck's constant at the length scale of the order Bohr radius, i.e. the scale that corresponds to the smallest distance on which the ideal gas paradigm realistically applies. This article is part of the theme issue 'Fundamental aspects of nonequilibrium thermodynamics'.

7.
Phys Rev E ; 100(2-2): 026101, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31574602

RESUMO

In their recent paper [Phys. Rev. E 99, 032134 (2019)2470-004510.1103/PhysRevE.99.032134], Oikonomou and Bagci have argued that Rényi entropy is ill suited for inference purposes because it is not consistent with the Shore-Johnson axioms of statistical estimation theory. In this Comment we seek to clarify the latter statement by showing that there are several issues in Oikonomou's and Bagci's reasonings which lead to erroneous conclusions. When all these issues are properly accounted for, no violation of Shore-Johnson axioms is found.

8.
Phys Rev Lett ; 122(12): 120601, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30978043

RESUMO

In this Letter, we show that the Shore-Johnson axioms for the maximum entropy principle in statistical estimation theory account for a considerably wider class of entropic functional than previously thought. Apart from a formal side of the proof where a one-parameter class of admissible entropies is identified, we substantiate our point by analyzing the effect of weak correlations and by discussing two pertinent examples: two-qubit quantum system and transverse-momentum behavior of hadrons in high-energy proton-proton collisions.

9.
Phys Rev E ; 95(2-1): 022103, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28297885

RESUMO

In this paper we point out that the generalized statistics of Tsallis-Havrda-Charvát can be conveniently used as a conceptual framework for statistical treatment of random chains. In particular, we use the path-integral approach to show that the ensuing partition function can be identified with the partition function of a fluctuating oriented random loop of arbitrary length and shape in a background scalar potential. To put some meat on the bare bones, we illustrate this with two statistical systems: Schultz-Zimm polymer and relativistic particle. Further salient issues such as the projective special linear group PSL(2,R) transformation properties of Tsallis' inverse-temperature parameter and a grand-canonical ensemble of fluctuating random loops related to the Tsallis-Havrda-Charvát statistics are also briefly discussed.

10.
Phys Rev E ; 93(6): 060104, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27415188

RESUMO

We use the concept of entropy power to derive a one-parameter class of information-theoretic uncertainty relations for pairs of conjugate observables in an infinite-dimensional Hilbert space. This class constitutes an infinite tower of higher-order statistics uncertainty relations, which allows one in principle to determine the shape of the underlying information-distribution function by measuring the relevant entropy powers. We illustrate the capability of this class by discussing two examples: superpositions of vacuum and squeezed states and the Cauchy-type heavy-tailed wave function.

11.
Artigo em Inglês | MEDLINE | ID: mdl-26764662

RESUMO

We derive a local-time path-integral representation for a generic one-dimensional time-independent system. In particular, we show how to rephrase the matrix elements of the Bloch density matrix as a path integral over x-dependent local-time profiles. The latter quantify the time that the sample paths x(t) in the Feynman path integral spend in the vicinity of an arbitrary point x. Generalization of the local-time representation that includes arbitrary functionals of the local time is also provided. We argue that the results obtained represent a powerful alternative to the traditional Feynman-Kac formula, particularly in the high- and low-temperature regimes. To illustrate this point, we apply our local-time representation to analyze the asymptotic behavior of the Bloch density matrix at low temperatures. Further salient issues, such as connections with the Sturm-Liouville theory and the Rayleigh-Ritz variational principle, are also discussed.

12.
Artigo em Inglês | MEDLINE | ID: mdl-24580200

RESUMO

We study the high-temperature behavior of quantum-mechanical path integrals. Starting from the Feynman-Kac formula, we derive a functional representation of the Wigner-Kirkwood perturbation expansion for quantum Boltzmann densities. As shown by its applications to different potentials, the presented expansion turns out to be quite efficient in generating analytic form of the higher-order expansion coefficients. To put some flesh on the bare bones, we apply the expansion to obtain basic thermodynamic functions of the one-dimensional anharmonic oscillator. Further salient issues, such as generalization to the Bloch density matrix and comparison with the more customary world-line formulation, are discussed.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(3 Pt 1): 031122, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18851008

RESUMO

Probability distributions which can be obtained from superpositions of Gaussian distributions of different variances v=sigma;{2} play a favored role in quantum theory and financial markets. Such superpositions need not necessarily obey the Chapman-Kolmogorov semigroup relation for Markovian processes because they may introduce memory effects. We derive the general form of the smearing distributions in v which do not destroy the semigroup property. The smearing technique has two immediate applications. It permits simplifying the system of Kramers-Moyal equations for smeared and unsmeared conditional probabilities, and can be conveniently implemented in the path integral calculus. In many cases, the superposition of path integrals can be evaluated much easier than the initial path integral. Three simple examples are presented, and it is shown how the technique is extended to quantum mechanics.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 69(2 Pt 2): 026128, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14995541

RESUMO

Despite recent claims we argue that Rényi's entropy is an observable quantity. It is shown that, contrary to popular belief, the reported domain of instability for Rényi entropies has zero measure (Bhattacharyya measure). In addition, we show that the instabilities can be easily emended by introducing a coarse graining into an actual measurement. We also clear up any doubts regarding the observability of Rényi's entropy in (multi)fractal systems and in systems with absolutely continuous probability density functions.


Assuntos
Entropia , Física/métodos , Termodinâmica , Fractais , Modelos Estatísticos , Probabilidade , Estatística como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...