Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 11(43): 40232-40242, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31571474

RESUMO

The demand for wearable, stretchable soft electronics for human-machine interface applications continues to grow given the potential of these devices in humanoid robotics, prosthetics, and health-monitoring devices. We demonstrate fabrication of multifunctional sensors with simultaneous temperature-, pressure-, proximity-, and strain (or bending)-sensing capabilities, combined with heating and UV-protection features. These multifunctional sensors are flexible, light, and transparent and are thus body-attachable. Silver nanowires are supersonically sprayed on a large-scale transparent and flexible roll-to-roll substrate. The junctions between nanowires are physically fused by a strong impact resulting from supersonic spraying, which promotes adhesion and efficient deposition of the nanowire network. Accordingly, nanowires are strongly interconnected, facilitating efficient propagation of electric signals through the fused nanowire network, which allows simultaneous operation of such sensors while maintaining significant transparency. These multifunctional sensors are mechanically durable and retain long-term stability. A theoretical discussion is provided to explain the respective mechanisms of heating and proximity, pressure, and strain sensing.

2.
Nanoscale ; 10(42): 19825-19834, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30334563

RESUMO

Electrospun metal-plated nanofibers and supersonically sprayed nanowires were used to fabricate hybrid films exhibiting a superior low sheet resistance of 0.18 Ω sq-1, a transparency of 91.1%, and a figure-of-merit of 2.315 Ω-1. The films are suitable to serve as thermal sensors and heaters. Such hybrid transparent conducting films are highly flexible and thus wearable. They can be used as body-temperature monitors and heaters. The employed hybrid approach improved the sheet resistance diminishing it to a minimum, while maintaining transparency. In addition, the low sheet resistance of the films facilitates their powering with a low-voltage battery and thus, portability. The thermal sensing and heating capabilities were demonstrated for such films with various sheet resistances and degrees of transparency. The temperature sensing was achieved by the resistance change of the film; the resistance value was converted back to temperature. The sensing performance increased with the improvement in the sheet resistance. The temperature coefficient of resistivity was TCR = 0.0783 K-1. The uniform distribution of the metal-plated nanofibers and nanowires resulted in a uniform Joule heating contributing to an efficient convection heat transfer from the heaters to the surrounding, demonstrated by an improved convective heat transfer coefficient.


Assuntos
Metais/química , Nanofibras/química , Nanofios/química , Dispositivos Eletrônicos Vestíveis , Materiais Biocompatíveis/química , Humanos , Prata/química , Temperatura , Condutividade Térmica
3.
Nat Commun ; 9(1): 2502, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29950673

RESUMO

The numbers and types of cells constituting vertebrate neural tissues are determined by cellular mechanisms that couple neurogenesis to the proliferation of neural progenitor cells. Here we identified a role of mammalian target of rapamycin complex 1 (mTORC1) in the development of neural tissue, showing that it accelerates progenitor cell cycle progression and neurogenesis in mTORC1-hyperactive tuberous sclerosis complex 1 (Tsc1)-deficient mouse retina. We also show that concomitant loss of immunoproteasome subunit Psmb9, which is induced by Stat1 (signal transducer and activator of transcription factor 1), decelerates cell cycle progression of Tsc1-deficient mouse retinal progenitor cells and normalizes retinal developmental schedule. Collectively, our results establish a developmental role for mTORC1, showing that it promotes neural development through activation of protein turnover via a mechanism involving the immunoproteasome.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neurogênese/fisiologia , Retina/crescimento & desenvolvimento , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Animais , Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Cisteína Endopeptidases/metabolismo , Embrião de Mamíferos , Feminino , Camundongos , Camundongos Knockout , Células-Tronco Neurais/metabolismo , Complexo de Endopeptidases do Proteassoma/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Retina/citologia , Retina/metabolismo , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/fisiologia , Proteína 1 do Complexo Esclerose Tuberosa/genética
4.
Nanoscale ; 10(20): 9720-9728, 2018 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-29762621

RESUMO

Charge recombination in CuO photocathodes inhibits efficient electron flow and limits the photo-electrochemical performance of these cathodes for solar water splitting. To circumvent this shortcoming, we introduce highly conductive Ni/CuO core-shell structured fibers. The photocurrent density (PCD) achieved with these core-shell fibers exceeded that of fibers without a Ni core by a factor of 2.6. The PCD enhancement arises from increased acceptor concentration and electron-hole recombination time, as measured by electrochemical impedance spectroscopy. These core-shell nanofibers were fabricated via electrospinning and electroplating. First, a polyacrylonitrile fiber was electrospun and then seeded with metal via sputtering. Second, electroplating was used to encase and metalize the fiber with Ni and Cu. Finally, the outermost Cu shell was oxidized to CuO, which is an effective photocathode for solar water splitting. The Ni-CuO, core-shell layers were characterized by scanning electron microscopy, elemental mapping, X-ray diffraction, and X-ray photoelectron spectroscopy. The core Ni content and number of core-shell fibers per area were optimized through parametric studies.

5.
Nanoscale ; 10(14): 6589-6601, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29578221

RESUMO

Aneurysmal subarachnoid hemorrhage (SAH) is the extravasation of blood into the subarachnoid space and is fatal in most cases. Platinum coils have been used to fill the hemorrhage site and prevent the extravasation of blood. Here we explored the use of Pt-coated polymer nanofibers (NF) to prevent blood extravasation and were able to achieve improved results in vitro. The polymer nanofibers were produced via electrospinning and were subsequently electroplated with Pt, resulting in metalized nanofibers. These nanofibers were installed within a microfluidic channel, and the resulting reduction in the permeability was evaluated using a fluid similar to blood. Based on the obtained results, these newly developed nanofibers are expected to decrease the operation cost for SAH, owing to their reduced size and low material cost. Furthermore, it is expected that these nanofibers will be used in a smaller amount during SAH operation while having the same preventive effect. This should reduce the operational risk associated with the multiple steps required to place the Pt coils at the SAH site. Finally, the underlying hydrodynamic mechanism responsible for the reduced permeability of the synthesized nanofibers is described.


Assuntos
Aneurisma/terapia , Embolização Terapêutica , Nanofibras/química , Hemorragia Subaracnóidea/terapia , Humanos , Polímeros/química
6.
ACS Appl Mater Interfaces ; 9(40): 35325-35332, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28945338

RESUMO

We have sequentially deposited layers of silver nanowires (AgNWs), silicon dioxide (SiO2) nanoparticles, and polystyrene (PS) nanoparticles on uncoated glass by a rapid low-cost supersonic spraying method to create antifrosting, anticondensation, and self-cleaning glass. The conductive silver nanowire network embedded in the coating allows electrical heating of the glass surface. Supersonic spraying is a single-step coating technique that does not require vacuum. The fabricated multifunctional glass was characterized by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), ultraviolet-visible spectroscopy, and transmission electron microscopy (TEM). The thermal insulation and antifrosting performance were demonstrated using infrared thermal imaging. The reliability of the electrical heating function was tested through extensive cycling. This transparent multifunctional coating holds great promise for use in various smart window designs.

7.
Nanoscale ; 9(26): 9139-9147, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28649681

RESUMO

Bioluminescent jellyfish has a unique structure derived from fiber/polymer interfaces that is advantageous for effective light scattering in the dark, deep sea water. Herein, we demonstrate the fabrication of bio-inspired hybrid films by mimicry of the jellyfish's structure, leading to excellent light-scattering performance and defrosting capability. A haze value reaching 59.3% and a heating temperature of up to 292 °C were achieved with the films. Accordingly, the developed surface constitutes an attractive optical device for lighting applications, especially for street or vehicle luminaries for freezing Arctic-climate countries. The morphological details of the hybrid films were revealed by scanning electron microscopy. The light-scattering properties of these films were examined by ultraviolet-visible-infrared spectrophotometry and anti-glare effect analyses. The defrosting performance of the hybrid films was evaluated via heating tests and infra-red observations.

8.
Nanoscale ; 9(18): 6076-6084, 2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28443940

RESUMO

Mechanically robust freestanding platinum (Pt) nanofiber (NF) meshes are of great interest in applications where the corrosion resistance, malleability, and stability of a pure platinum structure must be combined with high surface area for catalysis. For photoelectrochemical applications, transparent electrodes are desirable. Several 1-dimensional (1D) Pt-based materials have been developed, but energy-intensive fabrication techniques and unsatisfactory performance have limited their practical implementation in next-generation photoelectrochemical applications. Here, we introduce relatively simple yet commercially-viable methods for creating robust, free-standing PtNF mats through combined electrospinning/solution blowing and electroplating steps. The PtNFs obtained by these processes exhibited outstanding low sheet resistance (Rs) values with reasonable transparency. In addition, the PtNFs were highly bendable and stretchable. Thus, the new methods and materials presented here hold great promise for creating mechanically robust and catalytically active transparent conducting films for diverse photoelectrochemical applications.

9.
Adv Mater ; 28(33): 7149-54, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27291326

RESUMO

Self-junctioned copper nanofiber transparent flexible films are produced using electrospinning and electroplating processes that provide high performances of T = 97% and Rs = 0.42 Ω sq(-1) by eliminating junction resistance at wire intersections. The film remains conductive after being stretched by up to 770% (films with T = 76%) and after 1000 cycles of bending to a 5 mm radius.

10.
ACS Appl Mater Interfaces ; 8(24): 15406-14, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27232695

RESUMO

We demonstrate production of nanotextured p-type cupric oxide (CuO) films via a low-cost scalable supersonic cold spray method in open air conditions. Simply sweeping the spray nozzle across a substrate produced a large-scale CuO film. When used as hydrogen evolution photocathodes, these films produced photocurrent densities (PCD) of up to 3.1 mA/cm(2) under AM1.5 illumination, without the use of a cocatalyst or any additional heterojunction layers. Cu2O particles were supersonically sprayed onto an indium tin oxide (ITO) coated soda lime glass (SLG) substrate, without any solvent or binder. Annealing in air converted the Cu2O films to CuO, with a corresponding decrease in the bandgap and increase in the fraction of the solar spectrum absorbed. Annealing at 600 °C maximized the PCD. Increasing the supersonic gas velocity from ∼450 to ∼700 m/s produced denser films with greater surface roughness, in turn producing higher PCD. The nanoscale texture of the films, which resembles the skin of a dinosaur, enhanced their performance, leading to one of the highest PCD values in the literature. We characterized the films by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, and transmission electron microscopy to elucidate the origins of their outstanding performance. This supersonic cold spraying deposition has the potential to be used on a commercial scale for low cost mass production.

11.
ACS Appl Mater Interfaces ; 8(14): 9446-53, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26999581

RESUMO

Here, we demonstrate the production of electrospun SnO(x)-ZnO polyacrylonitrile (PAN) nanofibers (NFs) that are flexible, freestanding, and binder-free. This NF fabric is flexible and thus can be readily tailored into a coin for further cell fabrication. These properties allow volume expansion of the oxide materials and provide shortened diffusion pathways for Li ions than those achieved using the nanoparticle approach. Amorphous SnO(x)-ZnO particles were uniformly dispersed in the carbon NF (CNF). The SnO(x)-ZnO CNFs with a Sn:Zn ratio of 3:1 exhibited a superior reversible capacity of 963 mA·h·g(-1) after 55 cycles at a current density of 100 mA·g(-1), which is three times higher than the capacity of graphite-based anodes. The amorphous NFs facilitated Li2O decomposition, thereby enhancing the reversible capacity. ZnO prevented the aggregation of Sn, which, in turn, conferred stable and high discharge capacity to the cell. Overall, the SnO(x)-ZnO CNFs were shown to exhibit remarkably high capacity retention and high reversible and rate capacities as Li ion battery anodes.

12.
Nanoscale ; 7(45): 19170-7, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26524157

RESUMO

Graphene flakes were entrapped between nylon 6 nanofiber layers and the resulting assembly was used as a recyclable water purification membrane. Water purification was achieved via adsorption of the model organic pollutant (methylene blue; MB) on the surface of the graphene component. Desorption of these MB molecules was achieved by applying high voltage, which increased the removal efficiency of the recycled membrane. The adsorption and desorption mechanisms were evaluated in detail. The material characteristics of the membrane were analyzed by scanning electron microscopy, Raman, UV-visible, and Fourier transform infrared analyses.


Assuntos
Caprolactama/análogos & derivados , Grafite/química , Membranas Artificiais , Nanofibras/química , Polímeros/química , Purificação da Água/métodos , Adsorção , Caprolactama/química , Nanofibras/ultraestrutura
13.
Nanoscale ; 7(42): 17778-85, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26456716

RESUMO

Coaxial electrospinning was used to fabricate two types of core-shell fibers: the first type with liquid resin monomer in the core and polyacrylonitrile in the shell, and the second type with liquid curing agent in the core and polyacrylonitrile in the shell. These two types of core-shell fibers were mutually entangled and embedded into two flexible transparent matrices thus forming transparent flexible self-healing composite materials. Such materials could be formed before only using emulsion electrospinning, rather than coaxial electrospinning. The self-healing properties of such materials are associated with release of healing agents (resin monomer and cure) from nanofiber cores in damaged locations with the subsequent polymerization reaction filing the micro-crack with polydimethylsiloxane. Transparency of these materials is measured and the anti-corrosive protection provided by them is demonstrated in electrochemical experiments.

14.
ACS Appl Mater Interfaces ; 7(35): 19546-54, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26284888

RESUMO

The present work aims at development of self-healing materials capable of partially restoring their mechanical properties under the conditions of prolonged periodic loading and unloading, which is characteristic, for example, of aerospace applications. Composite materials used in these and many other applications frequently reveal multiple defects stemming from their original inhomogeneity, which facilitates microcracking and delamination at ply interfaces. Self-healing nanofiber mats may effectively prevent such damage without compromising material integrity. Two types of core-shell nanofibers were simultaneously electrospun onto the same substrate in order to form a mutually entangled mat. The first type of core-shell fibers consisted of resin monomer (dimethylsiloxane) within the core and polyacrylonitrile within the shell. The second type of core-shell nanofibers consisted of cure (dimethyl-methyl hydrogen-siloxane) within the core and polyacrylonitrile within the shell. These mutually entangled nanofiber mats were used for tensile testing, and they were also encased in polydimethylsiloxane to form composites that were also subsequently subjected to tensile testing. During tensile tests, the nanofibers can be damaged in stretching up to the plastic regime of deformation. Then, the resin monomer and cure was released from the cores and the polydimethylsiloxane resin was polymerized, which might be expected to result in the self-healing properties of these materials. To reveal and evaluate the self-healing properties of the polyacrylonitrile-resin-cure nanofiber mats and their composites, the results were compared to the tensile test results of the monolithic polyacrylonitrile nanofiber mats or composites formed by encasing polyacrylonitrile nanofibers in a polydimethylsiloxane matrix. The latter do not possess self-healing properties, and indeed, do not recover their mechanical characteristics, in contrast to the polyacrylonitrile-resin-cure nanofiber mats and the composites reinforced by such mats. This is the first work, to the best of our knowledge, where self-healing nanofibers and composites based on them were developed, tested, and revealed restoration of mechanical properties (stiffness) in a 24 h rest period at room temperature.

15.
ACS Appl Mater Interfaces ; 7(35): 19555-61, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26038971

RESUMO

The capacity for core-shell nanofiber mats containing healing agents (resin monomer and cure) in their cores to adhere to a substrate was studied using blister testing. After extended periodic bending, the adhesion energy was measured, and the effect of self-healing on the composite's delamination from the substrate was considered. In addition, the cohesion of two layers of the self-healing nanofibers was examined using blister testing and compared to that of ordinary nanofiber mats. The damage inflicted by prolonged periodic bending to the interface of the two nanofiber mats was demonstrated to have self-healed, and the cohesion energy was measured.

16.
ACS Appl Mater Interfaces ; 7(1): 68-74, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25495247

RESUMO

We fabricated a PAN (polyacrylonitrile) NF (nanofiber)-embedded composite layer to adjust the light-control layer in light-emitting-diode (LED) and organic-light-emitting-diode (OLED) lighting systems with unique optical characteristics, for effective light scattering. The newly designed light-control composite layers with a composition of PAN NF/SU-8 exhibited a change in the optical properties, which was identified by the diameter control of the NF using a simple process. The change in the optical properties was largely dependent on the embedded NF's features. Therefore, the NF can be applied in different types of lighting systems, depending on each lighting device's purpose.


Assuntos
Nanofibras/química , Polímeros/química , Desenho de Equipamento , Luz , Polímeros/síntese química
17.
ACS Appl Mater Interfaces ; 6(16): 13657-66, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25017392

RESUMO

The effect of the supersonically blown below-74 nm nanofibers on cooling of high-temperature surfaces is studied experimentally and theoretically. The ultrathin supersonically blown nanofibers were deposited and then copper-plated, while their surfaces resembled those of the thorny-devil nanofibers. Here, we study for the first time the enhancement of surface cooling in gas in the cases of the forced and natural convection with the help of ultrathin thorny-devil nanofibers. These polymer core-metal shell nanofibers in nanometric scale possess a relatively high thickness of the metal shell and a high effective thermal conductivity, which facilitates heat transfer. The additional surface temperature reduction close to 5 °C in the case of the forced convection in the impinging air jet and close to 17 °C in the case of the natural convection was achieved. Correspondingly, an increase in the value of the heat transfer coefficient of about 41% in the forced convection, and about 20% in the natural convection was achieved due to the presence of the thorny devil electrospun and/or supersonically blown nanofibers.

18.
EMBO J ; 31(4): 817-28, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22258620

RESUMO

Development of nervous tissue is a coordinated process of neural progenitor cell (NPC) proliferation and neuronal differentiation. Intracellular signalling events that regulate the balance between NPC proliferation and neuronal differentiation, therefore, determine the size and composition of nervous tissues. Here, we demonstrate that negative regulation of phosphoinosite 3-kinase (PI3K)-Akt signalling by phosphatase tensin homologue (Pten) is essential for maintaining NPC population in mouse retina. We found that mouse retinal progenitor cells (RPCs) lacking the Pten gene complete neurogenesis earlier than their normal developmental schedule, resulting in their premature depletion in the mature retina. We further discover that Notch intracellular domain (NICD) fails to form transcription activator complex in Pten-deficient RPCs, and thereby unable to support RPC maintenance. Taken together, our results suggest that Pten plays a pivotal role in retinal neurogenesis by supporting Notch-driven RPC maintenance against neurogenic PI3K-Akt signalling.


Assuntos
Neurogênese/fisiologia , Neurônios/citologia , PTEN Fosfo-Hidrolase/fisiologia , Receptores Notch/metabolismo , Retina/citologia , Transdução de Sinais , Animais , Linhagem Celular , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...