Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 85(15): 9447-9453, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32559382

RESUMO

A high-throughput screening approach for simultaneous analysis and quantification of the percent conversion of up to 48 reactions has been developed using a thin-layer chromatography (TLC) imaging method. As a test-bed reaction, we monitored 48 thiol conjugate additions to a Meldrum's acid derivative (1) in parallel using TLC. The TLC elutions were imaged using a cell phone and a LEGO brick-constructed UV/vis light box. Further, a spotting device was constructed from LEGO bricks that allows simple transfer of the samples from a well-plate to the TLC plate. Using software that was developed to detect "blobs" and report their intensity, we were able to quantitatively determine the extent of completion of the 48 reactions with one analysis.


Assuntos
Raios Ultravioleta , Cromatografia em Camada Fina
2.
J Org Chem ; 82(10): 5198-5203, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28452495

RESUMO

Three water-soluble N-alkyl ammonium resorcinarene chlorides decorated with terminal hydroxyl groups at the lower rims were synthesized and characterized. The receptors were decorated at the upper rim with either terminal hydroxyl, rigid cyclohexyl, or flexible benzyl groups. The binding affinities of these receptors toward three viologen derivatives, two of which possess an acetylmethyl group attached to one of the pyridine nitrogens, in water were investigated via 1H NMR spectroscopy, fluorescence spectroscopy, and isothermal titration calorimetry (ITC). ITC quantification of the binding process gave association constants of up to 103 M-1. Analyses reveal a spontaneous binding process which are all exothermic and are both enthalpy and entropy driven.

3.
Chemistry ; 21(26): 9556-62, 2015 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-26014834

RESUMO

N-Alkyl ammonium resorcinarene chlorides, stabilized by an intricate array of hydrogen bonds leading to a cavitand-like structure, bind amides. The molecular recognition occurs through intermolecular hydrogen bonds between the carbonyl oxygen and the amide hydrogen of the guests and the cation-anion circular hydrogen-bonded seam of the hosts, as well as through CH⋅⋅⋅π interactions. The N-alkyl ammonium resorcinarene chlorides cooperatively bind a series of di-acetamides of varying spacer lengths ranging from three to seven carbons. Titration data fit either a 1:1 or 2:1 binding isotherm depending on the spacer lengths. Considering all the guests possess similar binding motifs, the first binding constants were similar (K1:10(2) M(-1)) for each host. The second binding constant was found to depend on the upper rim substituent of the host and the spacer length of the guests, with the optimum binding observed with the six-carbon spacer (K2:10(3) M(-2)). Short spacer lengths increase steric hindrance, whereas longer spacer lengths increase flexibility thus reducing cooperativity. The host with the rigid cyclohexyl upper rim showed stronger binding than the host with flexible benzyl arms. The cooperative binding of these divalent guests was studied in solution through (1)H NMR titration studies and supplemented by diffusion-ordered spectroscopy (DOSY), X-ray crystallography, and mass spectrometry.

4.
Chem Sci ; 6(1): 158-164, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25530834

RESUMO

The use of reversible covalent-bonding in a four-component assembly incorporating chiral alcohols was recently reported to give a method for determining the enantiomeric excess of the alcohols via CD spectroscopy. Experiments that probe the mechanism of this assembly, which consists of 2-formylpyridine (2-PA), dipicolylamine (DPA), Zn(II), and alcohols, to yield zinc-complexes of tren-like ligands, are presented. The studies focus upon the mechanism of conversion of a hemi-aminal (1) to a hemi-aminal ether (3), thereby incorporating the fourth component. It was found that molecular sieves along with 3 to 4 equivalents of alcohol are required to drive the conversion of 1 to 3. Attempts to isolate an intermediate in this reaction via addition of strong Lewis-acids led to the discovery of a five-membered ring pyridinium salt (5), but upon exposure to Zn(II) and alcohols gave different products than the assembly. This was interpreted to support the intermediacy of an iminium species. Kinetic studies reveal that the conversion of 1 to 3 is zero-order in alcohol in large excesses of alcohol, supporting rate-determining formation of an intermediate prior to reaction with alcohol. Further, the magnitude of the rate constant for interconversion of 1 and 3 are similar, supporting the notion that there are similar rate-determining steps (rds's) for the forward and reverse reactions. Hammett plots show that the rds involves creation of a negative charge (interpreted as the loss of positive charge), supporting the notion that decomplexation of Zn(II) from the assemblies to generate apo-forms of 1 and 3 is rate-determining. The individual mechanistic conclusions are combined to create a qualitative reaction coordinate diagram for the interconversion of 1 and 3.

5.
Acc Chem Res ; 47(7): 2212-21, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24892802

RESUMO

CONSPECTUS: The advent of high-throughput screening (HTS) for chiral catalysts has encouraged the development of fast methods for determining enantiomeric excess (ee). Traditionally, chromatographic methods such as chiral HPLC have been used for ee determination in HTS. These methods, however, are not optimal because of high duty cycle. Their long analysis time results in a bottleneck in the HTS process. A more ideal method for HTS that requires less analysis time such as chiroptical methods are thus of interest. In this Account, we summarize our efforts to develop host-guest systems for ee determination. The first part includes our enantioselective indicator displacement assays (eIDAs), and the second part focuses on our circular dichroism based host-guest systems. Our first eIDA utilizes chiral boronic acid receptors, along with prescreened indicators, to determine ee for chiral α-hydroxyacids and vicinal diols with ±7% average error (AE). To further the practicality for this system, a HTS protocol was developed. Our second eIDA uses diamino chiral ligands and Cu(II) as the receptor for the ee determination of α-amino acids. The system reported ±12% AE, and a HTS protocol was developed for this system. Our first CD based host-guest system uses metal complexes composed of Cu(I) or Pd(II) with enantiopure 2,2'-diphenylphosphino-1,1'-binaphthyl (BINAP) as host to determine the ee of chiral vicinal diamines (±4% AE), primary amines (±17% AE), and cyclohexanones (±7% AE). Primary amines and cyclohexanones were derivatized to form chiral imines or chiral hydrazones to allow coordination with the metal complex. Upon coordination of chiral analytes, the metal-to-ligand (BINAP) charge transfer band was modulated, thus allowing the discrimination of chiral analytes. As an effort to improve the accuracy for chiral primary amine ee determination, a system with a host composed of o-formylphenyl boronic acid (FPBA) and enantiopure 1,1'-bi-2-naphthol (BINOL) was used to reduce the AE to ±5.8%. In the presence of amines, the FPBA-BINOL host forms an imine-coordinated boronic ester, thus affecting the CD signal of the boron complex. Another chiral primary amine ee determination system was developed with Fe(II) and 3-hydroxy-2-pyridinecarbaldehyde. The chiral imines, formed by the pyridinecarbaldehyde and chiral amines, would coordinate to the Fe(II) ion yielding exciton-coupled circular dichroism (ECCD) active metal complexes. This system was able to determine the ee of chiral amines with ±5% AE. Furthermore, this imine-Fe(II) complex system also successfully determined the ee of α-chiral aldehydes with ±5% AE. Other ECCD based hosts were subsequently developed; one with bisquinolylpyridylamine and Cu(II) for chiral carboxylates and amino acids and another multicomponent system with pyridine chromophores for chiral secondary alcohol ee determination. Both of the systems were able to determine ee of the chiral analytes with ±3% AE. Overall, our group has developed ee determining host-guest systems that target various functionalities. To date, we are able to determine the ee of vicinal diols, α-hydroxyacids, vicinal diamines, cyclohexanones, amines, α-chiral aldehydes, carboxylates, amino acids, and secondary alcohols with ±7% or lower average error. Future development will involve improving the average error and employing the current systems to analyze real-life samples resulting from parallel syntheses.


Assuntos
Dicroísmo Circular , Óptica e Fotônica/métodos , Aminas/química , Aminoácidos/análise , Aminoácidos/química , Ácidos Carboxílicos/análise , Catálise , Complexos de Coordenação/química , Ensaios de Triagem em Larga Escala/métodos , Ligantes , Metais/química , Estrutura Molecular , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...