Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38656187

RESUMO

To address the plasticization phenomenon and MOF-polymer interfacial defects, we report the synthesis of ionic cross-linked MOF MMMs from a dual brominated polymer and MOF components by using N,N'-dimethylpiperazine as the cross-linker. We synthesized brominated MIL-101(Cr) nanoparticles by using mixed linkers and prepared brominated polyimide (6FDA-DAM-Br) to form ionic cross-linked MMMs. The gas permeation properties of the polyimide, ionic cross-linked MOF-polymer MMMs, and non-cross-linked MOF-polymer MMMs with various MOF weight loadings were investigated systematically to effectively understand the effects of MOF weight loading and ionic cross-linking. The ionic cross-linked 40 wt % MOF-polymer MMM exhibited significantly enhanced gas permeability with an H2 permeability of 1640 Barrer and CO2 permeability of 1981 Barrer and slightly decreased H2/CH4, H2/N2, CO2/CH4 and CO2/N2 selectivities of 16.9, 15.4, 20.5, and 18.6, respectively. The H2 and CO2 permeabilities are approximately 2-3 fold higher than those of the pure polyimide (6FDA-DAM) membrane. Moreover, the ionic cross-linked 40 wt % MOF-polymer MMM exhibited significantly increased resistance to plasticization. This is because the brominated MOF incorporation boosted molecular transport and polymer chain rigidity, and ionic cross-linking further reduced the number of interfacial defects and polymer chain mobility.

2.
Chem Commun (Camb) ; 59(46): 6987-7003, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37165690

RESUMO

Polymer membranes represent an attractive platform for energy-efficient gas separation, but they are known to suffer from plasticization during continuous gas-separation processes. This phenomenon is caused by the spontaneous relaxation of individual polymer chains arising from the swelling effect induced by high-pressure highly soluble gases such as CO2, and it weakens the stability of the membrane, leading to a significant loss of selectivity during the separation of mixed gases. Thus, minimizing the disadvantages of polymer membranes is essential to ensure reliable gas-separation performance for practical applications. This feature article summarizes the theory underlying the plasticization of polymer membranes and introduces covalent and non-covalent approaches to suppress plasticization behaviour on a molecular level.

3.
Chem Commun (Camb) ; 58(27): 4364-4367, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35296872

RESUMO

This conceptual study demonstrates the reinforcement of glassy polyimide membranes by incorporating a poly(benzyl ether)-type additive. Traces of the sterically bulky additive alter the overall physical properties of the entire matrix and further enhance the separation properties of small gas molecules.

4.
J Hazard Mater ; 416: 126239, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492990

RESUMO

Polystyrene (PS), a major plastic waste, is difficult to biodegrade due to its unique chemical structure that comprises phenyl moieties attached to long linear alkanes. In this study, we investigated the biodegradation of PS by mesophilic bacterial cultures obtained from various soils in common environments. Two new strains, Pseudomonas lini JNU01 and Acinetobacter johnsonii JNU01, were specifically enriched in non-carbonaceous nutrient medium, with PS as the only source of carbon. Their growth after culturing in basal media increased more than 3-fold in the presence of PS. Fourier transform infrared spectroscopy analysis, used to confirm the formation of hydroxyl groups and potentially additional chemical bond groups, showed an increase in the amount of oxidized PS samples. Moreover, field emission scanning electron microcopy analysis confirmed PS biodegradation by biofilms of the screened microbes. Water contact angle measurement additionally offered insights into the increased hydrophilic characteristics of PS films. Bioinformatics and transcriptional analysis of A. johnsonii JNU01 revealed alkane-1-monooxygenase (AlkB) to be involved in PS biodegradation, which was confirmed by the hydroxylation of PS using recombinant AlkB. These results provide significant insights into the discovery of novel functions of Pseudomonas sp. and Acinetobacter sp., as well as their potential as PS decomposers.


Assuntos
Poliestirenos , Solo , Acinetobacter , Bactérias , Biodegradação Ambiental , Pseudomonas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...