Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3312, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632336

RESUMO

Moiré superlattices of transition metal dichalcogenides offer a unique platform to explore correlated exciton physics with optical spectroscopy. Whereas the spatially modulated potentials evoke that the exciton resonances are distinct depending on a site in a moiré supercell, there have been no clear demonstration how the moiré excitons trapped in different sites dynamically interact with the doped carriers; so far the exciton-electron dynamic interactions were presumed to be site-dependent. Thus, the transient emergence of nonequilibrium correlations are open questions, but existing studies are limited to steady-state optical measurements. Here we report experimental fingerprints of site-dependent exciton correlations under continuous-wave as well as ultrashort optical excitations. In near-zero angle-aligned WSe2/WS2 heterobilayers, we observe intriguing polarization switching and strongly enhanced Pauli blocking near the Mott insulating state, dictating the dominant correlation-driven effects. When the twist angle is near 60°, no such correlations are observed, suggesting the strong dependence of atomic registry in moiré supercell configuration. Our studies open the door to largely unexplored nonequilibrium correlations of excitons in moiré superlattices.

2.
ACS Nano ; 18(9): 6927-6935, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38374663

RESUMO

Point defects dictate various physical, chemical, and optoelectronic properties of two-dimensional (2D) materials, and therefore, a rudimentary understanding of the formation and spatial distribution of point defects is a key to advancement in 2D material-based nanotechnology. In this work, we performed the demonstration to directly probe the point defects in 2H-MoTe2 monolayers that are tactically exposed to (i) 200 °C-vacuum-annealing and (ii) 532 nm-laser-illumination; and accordingly, we utilize a deep learning algorithm to classify and quantify the generated point defects. We discovered that tellurium-related defects are mainly generated in both 2H-MoTe2 samples; but interestingly, 200 °C-vacuum-annealing and 532 nm-laser-illumination modulate a strong n-type and strong p-type 2H-MoTe2, respectively. While 200 °C-vacuum-annealing generates tellurium vacancies or tellurium adatoms, 532 nm-laser-illumination prompts oxygen atoms to be adsorbed/chemisorbed at tellurium vacancies, giving rise to the p-type characteristic. This work significantly advances the current understanding of point defect engineering in 2H-MoTe2 monolayers and other 2D materials, which is critical for developing nanoscale devices with desired functionality.

3.
Nano Lett ; 24(4): 1277-1283, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38232182

RESUMO

We reveal the critical effect of ultrashort dephasing on the polarization of high harmonic generation in Dirac fermions. As the elliptically polarized laser pulse falls in or slightly beyond the multiphoton regime, the elliptically polarized high harmonic generation is produced and exhibits a characteristic polarimetry of the polarization ellipse, which is found to depend on the decoherence time T2. T2 could then be determined to be a few femtoseconds directly from the experimentally observed polarimetry of high harmonics. This shows a sharp contrast with the semimetal regime of higher pump intensity, where the polarimetry is irrelevant to T2. An access to the dephasing dynamics would extend the prospect of high harmonic generation into the metrology of a femtosecond dynamic process in the coherent quantum control.

4.
Mater Horiz ; 11(3): 747-757, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-37990857

RESUMO

Point defects often appear in two-dimensional (2D) materials and are mostly correlated with physical phenomena. The direct visualisation of point defects, followed by statistical inspection, is the most promising way to harness structure-modulated 2D materials. Here, we introduce a deep learning-based platform to identify the point defects in 2H-MoTe2: synergy of unit cell detection and defect classification. These processes demonstrate that segmenting the detected hexagonal cell into two unit cells elaborately cropped the unit cells: further separating a unit cell input into the Te2/Mo column part remarkably increased the defect classification accuracies. The concentrations of identified point defects were 7.16 × 1020 cm2 of Te monovacancies, 4.38 × 1019 cm2 of Te divacancies and 1.46 × 1019 cm2 of Mo monovacancies generated during an exfoliation process for TEM sample-preparation. These revealed defects correspond to the n-type character mainly originating from Te monovacancies, statistically. Our deep learning-oriented platform combined with atomic structural imaging provides the most intuitive and precise way to analyse point defects and, consequently, insight into the defect-property correlation based on deep learning in 2D materials.

5.
Nano Lett ; 23(10): 4516-4523, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37184356

RESUMO

We report a method to precisely control the atomic defects at grain boundaries (GBs) of monolayer MoS2 by vapor-liquid-solid (VLS) growth using sodium molybdate liquid alloys, which serve as growth catalysts to guide the formations of the thermodynamically most stable GB structure. The Mo-rich chemical environment of the alloys results in Mo-polar 5|7 defects with a yield exceeding 95%. The photoluminescence (PL) intensity of VLS-grown polycrystalline MoS2 films markedly exceeds that of the films, exhibiting abundant S 5|7 defects, which are kinetically driven by vapor-solid-solid growths. Density functional theory calculations indicate that the enhanced PL intensity is due to the suppression of nonradiative recombination of charged excitons with donor-type defects of adsorbed Na elements on S 5|7 defects. Catalytic liquid alloys can aid in determining a type of atomic defect even in various polycrystalline 2D films, which accordingly provides a technical clue to engineer their properties.

6.
Nat Commun ; 14(1): 1801, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002230

RESUMO

Higher-order topological insulators are recently discovered quantum materials exhibiting distinct topological phases with the generalized bulk-boundary correspondence. Td-WTe2 is a promising candidate to reveal topological hinge excitation in an atomically thin regime. However, with initial theories and experiments focusing on localized one-dimensional conductance only, no experimental reports exist on how the spin orientations are distributed over the helical hinges-this is critical, yet one missing puzzle. Here, we employ the magneto-optic Kerr effect to visualize the spinful characteristics of the hinge states in a few-layer Td-WTe2. By examining the spin polarization of electrons injected from WTe2 to graphene under external electric and magnetic fields, we conclude that WTe2 hosts a spinful and helical topological hinge state protected by the time-reversal symmetry. Our experiment provides a fertile diagnosis to investigate the topologically protected gapless hinge states, and may call for new theoretical studies to extend the previous spinless model.

7.
Nature ; 614(7946): 88-94, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36653458

RESUMO

Two-dimensional (2D) materials and their heterostructures show a promising path for next-generation electronics1-3. Nevertheless, 2D-based electronics have not been commercialized, owing mainly to three critical challenges: i) precise kinetic control of layer-by-layer 2D material growth, ii) maintaining a single domain during the growth, and iii) wafer-scale controllability of layer numbers and crystallinity. Here we introduce a deterministic, confined-growth technique that can tackle these three issues simultaneously, thus obtaining wafer-scale single-domain 2D monolayer arrays and their heterostructures on arbitrary substrates. We geometrically confine the growth of the first set of nuclei by defining a selective growth area via patterning SiO2 masks on two-inch substrates. Owing to substantial reduction of the growth duration at the micrometre-scale SiO2 trenches, we obtain wafer-scale single-domain monolayer WSe2 arrays on the arbitrary substrates by filling the trenches via short growth of the first set of nuclei, before the second set of nuclei is introduced, thus without requiring epitaxial seeding. Further growth of transition metal dichalcogenides with the same principle yields the formation of single-domain MoS2/WSe2 heterostructures. Our achievement will lay a strong foundation for 2D materials to fit into industrial settings.

8.
Adv Mater ; 35(4): e2203481, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35953281

RESUMO

A new type of atomically thin synaptic network on van der Waals (vdW) heterostructures is reported, where each ultrasmall cell (≈2 nm thick) built with trilayer WS2 semiconductor acts as a gate-tunable photoactive synapse, i.e., a photo-memtransistor. A train of UV pulses onto the WS2 memristor generates dopants in atomic-level precision by direct light-lattice interactions, which, along with the gate tunability, leads to the accurate modulation of the channel conductance for potentiation and depression of the synaptic cells. Such synaptic dynamics can be explained by a parallel atomistic resistor network model. In addition, it is shown that such a device scheme can generally be realized in other 2D vdW semiconductors, such as MoS2 , MoSe2 , MoTe2 , and WSe2 . Demonstration of these atomically thin photo-memtransistor arrays, where the synaptic weights can be tuned for the atomistic defect density, provides implications for a new type of artificial neural networks for parallel matrix computations with an ultrahigh integration density.

9.
Nat Commun ; 13(1): 6630, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333325

RESUMO

Under strong laser fields, electrons in solids radiate high-harmonic fields by travelling through quantum pathways in Bloch bands in the sub-laser-cycle timescales. Understanding these pathways in the momentum space through the high-harmonic radiation can enable an all-optical ultrafast probe to observe coherent lightwave-driven processes and measure electronic structures as recently demonstrated for semiconductors. However, such demonstration has been largely limited for semimetals because the absence of the bandgap hinders an experimental characterization of the exact pathways. In this study, by combining electrostatic control of chemical potentials with HHG measurement, we resolve quantum pathways of massless Dirac fermions in graphene under strong laser fields. Electrical modulation of HHG reveals quantum interference between the multi-photon interband excitation channels. As the light-matter interaction deviates beyond the perturbative regime, elliptically polarized laser fields efficiently drive massless Dirac fermions via an intricate coupling between the interband and intraband transitions, which is corroborated by our theoretical calculations. Our findings pave the way for strong-laser-field tomography of Dirac electrons in various quantum semimetals and their ultrafast electronics with a gate control.

10.
ACS Nano ; 16(10): 16385-16393, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36129115

RESUMO

Ultrathin layered crystals of coordinated chromium(III) are promising not only as two-dimensional (2D) magnets but also as 2D near-infrared (NIR) emitters due to long-range spin correlation and efficient transition between high- and low-spin excited states of Cr3+ ions. In this study, we report on the dual-band NIR photoluminescence (PL) of CrPS4 and show that its excitonic emission bifurcates into fluorescence and phosphorescence depending on thickness, temperature, and defect density. In addition to the spectral branching, the biexponential decay of PL transients, also affected by the three factors, could be well described within a three-level kinetic model for Cr(III). In essence, the PL bifurcations are governed by activated reverse intersystem crossing from the low- to high-spin states, and the transition barrier becomes lower for thinner 2D samples because of surface-localized defects. Our findings can be generalized to 2D solids of coordinated metals and will be valuable in realizing groundbreaking magneto-optic functions and devices.

11.
Nat Commun ; 12(1): 7134, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880247

RESUMO

Hexagonal boron nitride (hBN) is a van der Waals semiconductor with a wide bandgap of ~ 5.96 eV. Despite the indirect bandgap characteristics of hBN, charge carriers excited by high energy electrons or photons efficiently emit luminescence at deep-ultraviolet (DUV) frequencies via strong electron-phonon interaction, suggesting potential DUV light emitting device applications. However, electroluminescence from hBN has not been demonstrated at DUV frequencies so far. In this study, we report DUV electroluminescence and photocurrent generation in graphene/hBN/graphene heterostructures at room temperature. Tunneling carrier injection from graphene electrodes into the band edges of hBN enables prominent electroluminescence at DUV frequencies. On the other hand, under DUV laser illumination and external bias voltage, graphene electrodes efficiently collect photo-excited carriers in hBN, which generates high photocurrent. Laser excitation micro-spectroscopy shows that the radiative recombination and photocarrier excitation processes in the heterostructures mainly originate from the pristine structure and the stacking faults in hBN. Our work provides a pathway toward efficient DUV light emitting and detection devices based on hBN.

12.
Nat Nanotechnol ; 16(10): 1092-1098, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34267369

RESUMO

A broad range of transition metal dichalcogenide (TMDC) semiconductors are available as monolayer (ML) crystals, so the precise integration of each kind into van der Waals (vdW) superlattices (SLs) could enable the realization of novel structures with previously unexplored functionalities. Here we report the atomic layer-by-layer epitaxial growth of vdW SLs with programmable stacking periodicities, composed of more than two kinds of dissimilar TMDC MLs, such as MoS2, WS2 and WSe2. Using kinetics-controlled vdW epitaxy in the near-equilibrium limit by metal-organic chemical vapour depositions, we achieved precise ML-by-ML stacking, free of interlayer atomic mixing, which resulted in tunable two-dimensional vdW electronic systems. As an example, by exploiting the series of type II band alignments at coherent two-dimensional vdW heterointerfaces, we demonstrated valley-polarized carrier excitations-one of the most distinctive electronic features in vdW ML semiconductors-which scale with the stack numbers n in our (MoS2/WS2)n SLs on optical excitations.

13.
Nano Lett ; 21(8): 3341-3354, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33825482

RESUMO

Selective doping in semiconductors is essential not only for monolithic integrated circuity fabrications but also for tailoring their properties including electronic, optical, and catalytic activities. Such active dopants are essentially point defects in the host lattice. In atomically thin two-dimensional (2D) transition-metal dichalcogenides (TMDCs), the roles of such point defects are particularly critical in addition to their large surface-to-volume ratio, because their bond dissociation energy is relatively weaker, compared to elemental semiconductors. In this Mini Review, we review recent advances in the identifications of diverse point defects in 2D TMDC semiconductors, as active dopants, toward the tunable doping processes, along with the doping methods and mechanisms in literature. In particular, we discuss key issues in identifying such dopants both at the atomic scales and the device scales with selective examples. Fundamental understanding of these point defects can hold promise for tunability doping of atomically thin 2D semiconductor platforms.

14.
Nat Commun ; 12(1): 1635, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712572

RESUMO

The valley Hall effect (VHE) in two-dimensional (2D) van der Waals (vdW) crystals is a promising approach to study the valley pseudospin. Most experiments so far have used bound electron-hole pairs (excitons) through local photoexcitation. However, the valley depolarization of such excitons is fast, so that several challenges remain to be resolved. We address this issue by exploiting a unipolar VHE using a heterobilayer made of monolayer MoS2/WTe2 to exhibit a long valley-polarized lifetime due to the absence of electron-hole exchange interaction. The unipolar VHE is manifested by reduced photoluminescence at the MoS2 A exciton energy. Furthermore, we provide quantitative information on the time-dependent valley Hall dynamics by performing the spatially-resolved ultrafast Kerr-rotation microscopy; we find that the valley-polarized electrons persist for more than 4 nanoseconds and the valley Hall mobility exceeds 4.49 × 103 cm2/Vs, which is orders of magnitude larger than previous reports.

15.
Sci Adv ; 6(3): eaay8912, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32010775

RESUMO

In spintronics, two-dimensional van der Waals crystals constitute a most promising material class for long-distance spin transport or effective spin manipulation at room temperature. To realize all-vdW-material-based spintronic devices, however, vdW materials with itinerant ferromagnetism at room temperature are needed for spin current generation and thereby serve as an effective spin source. We report theoretical design and experimental realization of a iron-based vdW material, Fe4GeTe2, showing a nearly room temperature ferromagnetic order, together with a large magnetization and high conductivity. These properties are well retained even in cleaved crystals down to seven layers, with notable improvement in perpendicular magnetic anisotropy. Our findings highlight Fe4GeTe2 and its nanometer-thick crystals as a promising candidate for spin source operation at nearly room temperature and hold promise to further increase T c in vdW ferromagnets by theory-guided material discovery.

16.
Opt Express ; 27(14): 19692-19701, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31503725

RESUMO

Two-dimensional (2-D) hexagonal boron nitride (h-BN) has attracted considerable attention for deep ultraviolet optoelectronics and visible single photon sources, however, realization of an electrically-driven light emitter remains challenging due to its wide bandgap nature. Here, we report electrically-driven visible light emission with a red-shift under increasing electric field from a few layer h-BN by employing a five-period Al2O3/h-BN multiple heterostructure and a graphene top electrode. Investigation of electrical properties reveals that the Al2O3 layers act as potential barriers confining injected carriers within the h-BN wells, while suppressing the electrostatic breakdown by trap-assisted tunneling, to increase the probability of radiative recombination. The result highlights a promising potential of such multiple heterostructure as a practical and efficient platform for electrically-driven light emitters based on wide bandgap two-dimensional materials.

17.
Nano Lett ; 19(10): 7464-7469, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31448923

RESUMO

Coherent light-matter interaction can transiently modulate the quantum states of matter under nonresonant laser excitation. This phenomenon, called the optical Stark effect, is one of the promising candidates for realizing ultrafast optical switches. However, the ultrafast modulations induced by the coherent light-matter interactions usually involve unwanted incoherent responses, significantly reducing the overall operation speed. Here, by using ultrafast pump-probe spectroscopy, we suppress the incoherent response and modulate the coherent-to-incoherent ratio in the two-dimensional semiconductor ReS2. We selectively convert the coherent and incoherent responses of an anisotropic exciton state by solely using photon polarizations, improving the control ratio by 3 orders of magnitude. The efficient modulation was enabled by transient superpositions of differential spectra from two nondegenerate exciton states due to the light polarization dependencies. This work provides a valuable contribution toward realizing ideal ultrafast optical switches.

18.
Sci Adv ; 5(7): eaaw3180, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31360767

RESUMO

We report wafer-scale growth of atomically thin, three-dimensional (3D) van der Waals (vdW) semiconductor membranes. By controlling the growth kinetics in the near-equilibrium limit during metal-organic chemical vapor depositions of MoS2 and WS2 monolayer (ML) crystals, we have achieved conformal ML coverage on diverse 3D texture substrates, such as periodic arrays of nanoscale needles and trenches on quartz and SiO2/Si substrates. The ML semiconductor properties, such as channel resistivity and photoluminescence, are verified to be seamlessly uniform over the 3D textures and are scalable to wafer scale. In addition, we demonstrated that these 3D films can be easily delaminated from the growth substrates to form suspended 3D semiconductor membranes. Our work suggests that vdW ML semiconductor films can be useful platforms for patchable membrane electronics with atomic precision, yet large areas, on arbitrary substrates.

19.
Nano Lett ; 19(6): 4043-4051, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31074998

RESUMO

Many two-dimensional (2D) semiconductors represented by transition metal dichalcogenides have tunable optical bandgaps in the visible or near IR-range standing as a promising candidate for optoelectronic devices. Despite this potential, however, their photoreactions are not well understood or controversial in the mechanistic details. In this work, we report a unique thickness-dependent photoreaction sensitivity and a switchover between two competing reaction mechanisms in atomically thin chromium thiophosphate (CrPS4), a two-dimensional antiferromagnetic semiconductor. CrPS4 showed a threshold power density 2 orders of magnitude smaller than that for MoS2 obeying a photothermal reaction route. In addition, reaction cross section quantified with Raman spectroscopy revealed distinctive power dependences in the low and high power regimes. On the basis of optical in situ thermometric measurements and control experiments against O2, water, and photon energy, we proposed a photochemical oxidation mechanism involving singlet O2 in the low power regime with a photothermal route for the other. We also demonstrated a highly effective encapsulation with Al2O3 as a protection against the destructive photoinduced and ambient oxidations.

20.
Nano Lett ; 19(3): 1814-1820, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30779586

RESUMO

We have achieved heteroepitaxial stacking of a van der Waals ( vdW) monolayer metal, 1T'-WTe2, and a semiconductor, 2H-WSe2, in which a distinctively low contact barrier was established across a clean epitaxial vdW gap. Our epitaxial 1T'-WTe2 films were identified as a semimetal by low temperature transport and showed the robust breakdown current density of 5.0 × 107 A/cm2. In comparison with a series of planar metal contacts, our epitaxial vdW contact was identified to possess intrinsic Schottky barrier heights below 100 meV for both electron and hole injections, contributing to superior ambipolar field-effect transistor (FET) characteristics, i.e., higher FET mobilities and higher on-off current ratios at smaller threshold gate voltages. We discuss our observations around the critical roles of the epitaxial vdW heterointerfaces, such as incommensurate stacking sequences and absence of extrinsic interfacial defects that are inaccessible by other contact methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...