Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 5106, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30504804

RESUMO

The priority of synaptic device researches has been given to prove the device potential for the emulation of synaptic dynamics and not to functionalize further synaptic devices for more complex learning. Here, we demonstrate an optic-neural synaptic device by implementing synaptic and optical-sensing functions together on h-BN/WSe2 heterostructure. This device mimics the colored and color-mixed pattern recognition capabilities of the human vision system when arranged in an optic-neural network. Our synaptic device demonstrates a close to linear weight update trajectory while providing a large number of stable conduction states with less than 1% variation per state. The device operates with low voltage spikes of 0.3 V and consumes only 66 fJ per spike. This consequently facilitates the demonstration of accurate and energy efficient colored and color-mixed pattern recognition. The work will be an important step toward neural networks that comprise neural sensing and training functions for more complex pattern recognition.


Assuntos
Sinapses/fisiologia , Algoritmos , Humanos , Modelos Neurológicos , Neurônios/fisiologia , Reconhecimento Automatizado de Padrão
2.
ACS Appl Mater Interfaces ; 10(38): 32765-32772, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30221922

RESUMO

A highly stable and reversible n-type doping technique for molybdenum disulfide (MoS2) transistors and photodetectors is developed in this study. This doping technique is based on triphenylphosphine (PPh3) and significantly improves the performance of MoS2 transistor and photodetector devices in terms of the on/off-current ratio (8.72 × 104 → 8.70 × 105), mobility (12.1 → 241 cm2/V·s), and photoresponsivity ( R) (2.77 × 103 → 3.92 × 105 A/W). The range of doping concentrations is broadly distributed between 1.56 × 1011 and 9.75 × 1012 cm-2 and is easily controlled by adjusting the temperature at which the PPh3 layer is formed. In addition, this doping technique provides two interesting properties that have not been reported for previous molecular doping techniques: (i) high stability leading to small variations in device performance after exposure to air for 14 days (on-current: 1.34% and photoresponsivity: 1.58%) and (ii) reversibility enabling the repetitive formation and removal of PPh3 molecules (doping and dedoping).

3.
Adv Sci (Weinh) ; 5(4): 1700423, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29721405

RESUMO

In recent years, various van der Waals (vdW) materials have been used in implementing high-performance photodetectors with high photoresponsivity over a wide detection range. However, in most studies reported so far, photodetection in the infrared (IR) region has not been achieved successfully. Although several vdW materials with narrow bandgaps have been proposed for IR detection, the devices based on these materials exhibit notably low photoresponsivity under IR light illumination. Here, highly efficient near-infrared (NIR) photodetection based on the interlayer optical transition phenomenon in a vdW heterojunction structure consisting of ReS2 and ReSe2 is demonstrated. In addition, by applying the gate-control function to the two-terminal vdW heterojunction photodetector, the photoresponsivity is enhanced to 3.64 × 105 A W-1 at λ = 980 nm and 1.58 × 105 A W-1 at λ = 1310 nm. Compared to the values reported for previous vdW photodetectors, these results are the highest levels of photoresponsivity in the NIR range. The study offers a novel device platform for achieving high-performance IR photodetectors.

4.
ACS Nano ; 11(6): 6319-6327, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28609089

RESUMO

Multivalued logic (MVL) devices/circuits have received considerable attention because the binary logic used in current Si complementary metal-oxide-semiconductor (CMOS) technology cannot handle the predicted information throughputs and energy demands of the future. To realize MVL, the conventional transistor platform needs to be redesigned to have two or more distinctive threshold voltages (VTHs). Here, we report a finding: the photoinduced drain current in graphene/WSe2 heterojunction transistors unusually decreases with increasing gate voltage under illumination, which we refer to as the light-induced negative differential transconductance (L-NDT) phenomenon. We also prove that such L-NDT phenomenon in specific bias ranges originates from a variable potential barrier at a graphene/WSe2 junction due to a gate-controllable graphene electrode. This finding allows us to conceive graphene/WSe2-based MVL logic circuits by using the ID-VG characteristics with two distinctive VTHs. Based on this finding, we further demonstrate a light-triggered ternary inverter circuit with three stable logical states (ΔVout of each state <0.05 V). Our study offers the pathway to substantialize MVL systems.

5.
Nat Commun ; 7: 13413, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27819264

RESUMO

Recently, negative differential resistance devices have attracted considerable attention due to their folded current-voltage characteristic, which presents multiple threshold voltage values. Because of this remarkable property, studies associated with the negative differential resistance devices have been explored for realizing multi-valued logic applications. Here we demonstrate a negative differential resistance device based on a phosphorene/rhenium disulfide (BP/ReS2) heterojunction that is formed by type-III broken-gap band alignment, showing high peak-to-valley current ratio values of 4.2 and 6.9 at room temperature and 180 K, respectively. Also, the carrier transport mechanism of the BP/ReS2 negative differential resistance device is investigated in detail by analysing the tunnelling and diffusion currents at various temperatures with the proposed analytic negative differential resistance device model. Finally, we demonstrate a ternary inverter as a multi-valued logic application. This study of a two-dimensional material heterojunction is a step forward toward future multi-valued logic device research.

6.
Adv Mater ; 28(31): 6518, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27511529

RESUMO

The effects of triphenylphosphine (PPh3 ) and (3-amino-propyl)triethoxysilane (APTES) on a rhenium diselenide (ReSe2 ) photodetector are systematically studied by J.-H. Park and co-workers on page 6711 in comparison with a conventional MoS2 device. A very high performance ReSe2 photodetector is demonstrated, which has a broad photodetection range, high photoresponsivity (1.18 × 10(6) A W(-1) ), and fast photoswitching speed (rising/decaying time: 58/263 ms).

7.
Adv Mater ; 28(31): 6711-8, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27167366

RESUMO

The effects of triphenylphosphine and (3-aminopropyl)triethoxysilane on a rhenium diselenide (ReSe2 ) photodetector are systematically studied by comparing with conventional MoS2 devices. This study demonstrates a very high performance ReSe2 photodetector with high photoresponsivity (1.18 × 10(6) A W(-1) ), fast photoswitching speed (rising/decaying time: 58/263 ms), and broad photodetection range (possible above 1064 nm).

8.
Adv Mater ; 28(24): 4824-31, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27106134

RESUMO

The effects of triphenylphosphine (PPh3 )-based n-doping and hexagonal boron nitride (h-BN) insertion on a tungsten diselenide (WSe2 ) photodetector are systematically studied, and a very high performance WSe2 /h-BN heterostucture-based photodetector is demonstrated with a record photoresponsivity (1.27 × 10(6) A W(-1) ) and temporal photoresponse (rise time: 2.8 ms, decay time: 20.8 ms) under 520 nm wavelength and 5 pW power laser illumination.

9.
Nanoscale Res Lett ; 7: 54, 2012 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-22221519

RESUMO

In this study, Pb(Zr0.52Ti0.48)O3/BiFeO3 [PZT/BFO] multilayer thin films were fabricated using the spin-coating method on a Pt(200 nm)/Ti(10 nm)/SiO2(100 nm)/p-Si(100) substrate alternately using BFO and PZT metal alkoxide solutions. The coating-and-heating procedure was repeated several times to form the multilayer thin films. All PZT/BFO multilayer thin films show a void-free, uniform grain structure without the presence of rosette structures. The relative dielectric constant and dielectric loss of the six-coated PZT/BFO [PZT/BFO-6] thin film were approximately 405 and 0.03%, respectively. As the number of coatings increased, the remanent polarization and coercive field increased. The values for the BFO-6 multilayer thin film were 41.3 C/cm2 and 15.1 MV/cm, respectively. The leakage current density of the BFO-6 multilayer thin film at 5 V was 2.52 × 10-7 A/cm2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA