Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2564, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519491

RESUMO

Engineered human cardiac tissues have been utilized for various biomedical applications, including drug testing, disease modeling, and regenerative medicine. However, the applications of cardiac tissues derived from human pluripotent stem cells are often limited due to their immaturity and lack of functionality. Therefore, in this study, we establish a perfusable culture system based on in vivo-like heart microenvironments to improve human cardiac tissue fabrication. The integrated culture platform of a microfluidic chip and a three-dimensional heart extracellular matrix enhances human cardiac tissue development and their structural and functional maturation. These tissues are comprised of cardiovascular lineage cells, including cardiomyocytes and cardiac fibroblasts derived from human induced pluripotent stem cells, as well as vascular endothelial cells. The resultant macroscale human cardiac tissues exhibit improved efficacy in drug testing (small molecules with various levels of arrhythmia risk), disease modeling (Long QT Syndrome and cardiac fibrosis), and regenerative therapy (myocardial infarction treatment). Therefore, our culture system can serve as a highly effective tissue-engineering platform to provide human cardiac tissues for versatile biomedical applications.


Assuntos
Células Endoteliais , Células-Tronco Pluripotentes Induzidas , Humanos , Diferenciação Celular , Miócitos Cardíacos , Engenharia Tecidual/métodos
2.
Front Microbiol ; 14: 1293149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029200

RESUMO

Antibiotic-induced gut microbiota disruption constitutes a major risk factor for Clostridioides difficile infection (CDI). Further, antibiotic therapy, which is the standard treatment option for CDI, exacerbates gut microbiota imbalance, thereby causing high recurrent CDI incidence. Consequently, probiotic-based CDI treatment has emerged as a long-term management and preventive option. However, the mechanisms underlying the therapeutic effects of probiotics for CDI remain uninvestigated, thereby creating a knowledge gap that needs to be addressed. To fill this gap, we used a multiomics approach to holistically investigate the mechanisms underlying the therapeutic effects of probiotics for CDI at a molecular level. We first screened Bifidobacterium longum owing to its inhibitory effect on C. difficile growth, then observed the physiological changes associated with the inhibition of C. difficile growth and toxin production via a multiomics approach. Regarding the mechanism underlying C. difficile growth inhibition, we detected a decrease in intracellular adenosine triphosphate (ATP) synthesis due to B. longum-produced lactate and a subsequent decrease in (deoxy)ribonucleoside triphosphate synthesis. Via the differential regulation of proteins involved in translation and protein quality control, we identified B. longum-induced proteinaceous stress. Finally, we found that B. longum suppressed the toxin production of C. difficile by replenishing proline consumed by it. Overall, the findings of the present study expand our understanding of the mechanisms by which probiotics inhibit C. difficile growth and contribute to the development of live biotherapeutic products based on molecular mechanisms for treating CDI.

3.
Biotechnol J ; 18(12): e2300180, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37596881

RESUMO

Butyrate-producing bacteria play a key role in human health, and recent studies have triggered interest in their development as next-generation probiotics. However, there remains limited knowledge not only on the identification of high-butyrate-producing bacteria in the human gut but also in the metabolic capacities for prebiotic carbohydrates and their interaction with the host. Herein, it was discovered that Roseburia intestinalis produces higher levels of butyrate and digests a wider variety of prebiotic polysaccharide structures compared with other human major butyrate-producing bacteria (Eubacterium rectale, Faecalibacterium prausnitzii, and Roseburia hominis). Moreover, R. intestinalis extracts upregulated the mRNA expression of tight junction proteins (TJP1, OCLN, and CLDN3) in human intestinal epithelial cells more than other butyrate-producing bacteria. R. intestinalis was cultured with human intestinal epithelial cells in the mimetic intestinal host-microbe interaction coculture system to explore the health-promoting effects using multiomics approaches. Consequently, it was discovered that live R. intestinalis only enhances purine metabolism and the oxidative pathway, increasing adenosine triphosphate levels in human intestinal epithelial cells, but that heat-killed bacteria had no effect. Therefore, this study proposes that R. intestinalis has potentially high value as a next-generation probiotic to promote host intestinal health.


Assuntos
Bactérias , Multiômica , Humanos , Bactérias/genética , Butiratos/metabolismo , Prebióticos , Células Epiteliais
4.
Antibiotics (Basel) ; 11(12)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36551372

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA), one of the most well-known human pathogens, houses many virulence factors and regulatory proteins that confer resistance to diverse antibiotics. Although they have been investigated intensively, the correlations among virulence factors, regulatory proteins and antibiotic resistance are still elusive. We aimed to identify the most significant global MRSA regulator by concurrently analyzing protein-binding and several promoters under same conditions and at the same time point. DNA affinity capture assay (DACA) was performed with the promoters of mecA, sarA, and sarR, all of which significantly impact survival of MRSA. Here, we show that SarA protein binds to all three promoters. Consistent with the previous reports, ΔsarA mutant exhibited weakened antibiotic resistance to oxacillin and reduced biofilm formation. Additionally, production and activity of many virulence factors such as phenol-soluble modulins (PSM), α-hemolysin, motility, staphyloxanthin, and other related proteins were decreased. Comparing the sequence of SarA with that of clinical strains of various lineages showed that all sequences were highly conserved, in contrast to that observed for AgrA, another major regulator of virulence and resistance in MRSA. We have demonstrated that SarA regulates antibiotic resistance and the expression of various virulence factors. Our results warrant that SarA could be a leading target for developing therapeutic agents against MRSA infections.

5.
Sci Adv ; 8(50): eabn5768, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36516259

RESUMO

Direct cardiac reprogramming has emerged as a promising therapeutic approach for cardiac regeneration. Full chemical reprogramming with small molecules to generate cardiomyocytes may be more amenable than genetic reprogramming for clinical applications as it avoids safety concerns associated with genetic manipulations. However, challenges remain regarding low conversion efficiency and incomplete cardiomyocyte maturation. Furthermore, the therapeutic potential of chemically induced cardiomyocytes (CiCMs) has not been investigated. Here, we report that a three-dimensional microenvironment reconstituted with decellularized heart extracellular matrix can enhance chemical reprogramming and cardiac maturation of fibroblasts to cardiomyocytes. The resultant CiCMs exhibit elevated cardiac marker expression, sarcomeric organization, and improved electrophysiological features and drug responses. We investigated the therapeutic potential of CiCMs reprogrammed in three-dimensional heart extracellular matrix in a rat model of myocardial infarction. Our platform can facilitate the use of CiCMs for regenerative medicine, disease modeling, and drug screening.


Assuntos
Miócitos Cardíacos , Regeneração , Ratos , Animais , Miócitos Cardíacos/metabolismo , Medicina Regenerativa/métodos , Matriz Extracelular , Fibroblastos/metabolismo
6.
Front Bioeng Biotechnol ; 10: 971739, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118584

RESUMO

Clostridioides difficile is a gram-positive anaerobic bacterium that causes antibiotic-associated infections in the gut. C. difficile infection develops in the intestine of a host with an imbalance of the intestinal microbiota and, in severe cases, can lead to toxic megacolon, intestinal perforation, and even death. Despite its severity and importance, however, the lack of a model to understand host-pathogen interactions and the lack of research results on host cell effects and response mechanisms under C. difficile infection remain limited. Here, we developed an in vitro anaerobic-aerobic C. difficile infection model that enables direct interaction between human gut epithelial cells and C. difficile through the Mimetic Intestinal Host-Microbe Interaction Coculture System. Additionally, an integrative multiomics approach was applied to investigate the biological changes and response mechanisms of host cells caused by C. difficile in the early stage of infection. The C. difficile infection model was validated through the induction of disaggregation of the actin filaments and disruption of the intestinal epithelial barrier as the toxin-mediated phenotypes following infection progression. In addition, an upregulation of stress-induced chaperones and an increase in the ubiquitin proteasomal pathway were identified in response to protein stress that occurred in the early stage of infection, and downregulation of proteins contained in the electron transfer chain and ATP synthase was observed. It has been demonstrated that host cell energy metabolism is inhibited through the glycolysis of Caco-2 cells and the reduction of metabolites belonging to the TCA cycle. Taken together, our C. difficile infection model suggests a new biological response pathway in the host cell induced by C. difficile during the early stage of infection at the molecular level under anaerobic-aerobic conditions. Therefore, this study has the potential to be applied to the development of future therapeutics through basic metabolic studies of C. difficile infection.

7.
Front Bioeng Biotechnol ; 10: 825399, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252133

RESUMO

Faecalibacterium prausnitzii, a major commensal bacterium in the human gut, is well known for its anti-inflammatory effects, which improve host intestinal health. Although several studies have reported that inulin, a well-known prebiotic, increases the abundance of F. prausnitzii in the intestine, the mechanism underlying this effect remains unclear. In this study, we applied liquid chromatography tandem mass spectrometry (LC-MS/MS)-based multiomics approaches to identify biological and enzymatic mechanisms of F. prausnitzii involved in the selective digestion of inulin. First, to determine the preference for dietary carbohydrates, we compared the growth of F. prausnitzii in several carbon sources and observed selective growth in inulin. In addition, an LC-MS/MS-based intracellular proteomic and metabolic profiling was performed to determine the quantitative changes in specific proteins and metabolites of F. prausnitzii when grown on inulin. Interestingly, proteomic analysis revealed that the putative proteins involved in inulin-type fructan utilization by F. prausnitzii, particularly ß-fructosidase and amylosucrase were upregulated in the presence of inulin. To investigate the function of these proteins, we overexpressed bfrA and ams, genes encoding ß-fructosidase and amylosucrase, respectively, in Escherichia coli, and observed their ability to degrade fructan. In addition, the enzyme activity assay demonstrated that intracellular fructan hydrolases degrade the inulin-type fructans taken up by fructan ATP-binding cassette transporters. Furthermore, we showed that the fructose uptake activity of F. prausnitzii was enhanced by the fructose phosphotransferase system transporter when inulin was used as a carbon source. Intracellular metabolomic analysis indicated that F. prausnitzii could use fructose, the product of inulin-type fructan degradation, as an energy source for inulin utilization. Taken together, this study provided molecular insights regarding the metabolism of F. prauznitzii for inulin, which stimulates the growth and activity of the beneficial bacterium in the intestine.

8.
Nat Commun ; 13(1): 1692, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354790

RESUMO

Matrigel, a mouse tumor extracellular matrix protein mixture, is an indispensable component of most organoid tissue culture. However, it has limited the utility of organoids for drug development and regenerative medicine due to its tumor-derived origin, batch-to-batch variation, high cost, and safety issues. Here, we demonstrate that gastrointestinal tissue-derived extracellular matrix hydrogels are suitable substitutes for Matrigel in gastrointestinal organoid culture. We found that the development and function of gastric or intestinal organoids grown in tissue extracellular matrix hydrogels are comparable or often superior to those in Matrigel. In addition, gastrointestinal extracellular matrix hydrogels enabled long-term subculture and transplantation of organoids by providing gastrointestinal tissue-mimetic microenvironments. Tissue-specific and age-related extracellular matrix profiles that affect organoid development were also elucidated through proteomic analysis. Together, our results suggest that extracellular matrix hydrogels derived from decellularized gastrointestinal tissues are effective alternatives to the current gold standard, Matrigel, and produce organoids suitable for gastrointestinal disease modeling, drug development, and tissue regeneration.


Assuntos
Hidrogéis , Organoides , Animais , Colágeno , Combinação de Medicamentos , Matriz Extracelular , Hidrogéis/metabolismo , Hidrogéis/farmacologia , Laminina , Camundongos , Organoides/metabolismo , Proteoglicanas , Proteômica
9.
Artigo em Inglês | MEDLINE | ID: mdl-35270741

RESUMO

A complete enumeration study was conducted to evaluate trends related to reperfusion therapies (intravenous thrombolysis (IVT) and endovascular treatment (EVT)) in acute ischemic stroke (AIS) in South Korea, according to sex, economic status, and age, over a 10-year period retrospectively, using the National Health Information Database (NHIS-2020-1-481). This study included AIS patients aged ≥20 years who were hospitalized in a general hospital or tertiary hospital for ≥4 days and underwent brain imaging during the same period. Study participants were classified by sex, economic status (Medical Aid beneficiaries and National Health Insurance beneficiaries) and age (20-44, 45-64, 65-79, and ≥80 years). Women showed a significantly lower OR (Odds ratio) than men in IVT (OR: 0.75; 95% CI: 0.73-0.77), EVT (OR: 0.96; 95% CI: 0.93-0.99), and any therapy (OR: 0.82; 95% CI: 0.80-0.84). The Medical Aid beneficiaries showed significantly lower OR in IVT (OR 0.91, 95% CI 0.88-0.95), EVT (OR 0.93, 95% CI 0.89-0.98), and either therapy (OR 0.92, 95% CI 0.90-0.95) than the National Health Insurance beneficiaries. This study showed sex and economic disparity related to reperfusion therapies in patients with AIS in Korea.


Assuntos
Isquemia Encefálica , Procedimentos Endovasculares , AVC Isquêmico , Acidente Vascular Cerebral , Isquemia Encefálica/epidemiologia , Isquemia Encefálica/terapia , Procedimentos Endovasculares/efeitos adversos , Procedimentos Endovasculares/métodos , Feminino , Humanos , AVC Isquêmico/epidemiologia , AVC Isquêmico/terapia , Masculino , Programas Nacionais de Saúde , Reperfusão , Estudos Retrospectivos , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/terapia , Terapia Trombolítica , Resultado do Tratamento
10.
Biotechnol J ; 17(2): e2100397, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34894414

RESUMO

The cellular components of Akkermansia muciniphila are considered potential biotherapeutics for the improvement of obesity, diabetes, and metabolic diseases. However, the molecular-based mechanism of A. muciniphila for treatment of obesity, which can provide important evidence for human research, has rarely been explored. Here, we applied integrative multiomics approaches to investigate the underlying molecular mechanism involved in obesity treatment by A. muciniphila. First, the treatment with a cell lysate of A. muciniphila reduced lipid accumulation in 3T3-L1 cells and downregulated the mRNA expression of proteins involved in adipogenesis and lipogenesis. Our proteomic results revealed that A. muciniphila decreased the expression of proteins involved in fat cell differentiation, fatty acid metabolism, and energy metabolism in adipocytes. Moreover, A. muciniphila significantly reduced the level of metabolites related to glycolysis, the TCA cycle, and ATP in adipocytes. Interestingly, serine protease inhibitor A3 (SERPINA3) homologs were overexpressed in the 3T3-L1 cells treated with A. muciniphila. Small interfering RNA (siRNA) transfection demonstrated that A. muciniphila upregulates SERPINA3G expression and inhibits lipogenesis in adipocytes. Taken together, our multiomics-based approaches enabled to uncover the molecular mechanism of A. muciniphila for treatment of obesity and provide potent anti-lipogenic agents.


Assuntos
Adipogenia , Lipogênese , Adipócitos , Adipogenia/genética , Akkermansia , Humanos , Proteômica
11.
Nat Commun ; 12(1): 4730, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354063

RESUMO

Brain organoids derived from human pluripotent stem cells provide a highly valuable in vitro model to recapitulate human brain development and neurological diseases. However, the current systems for brain organoid culture require further improvement for the reliable production of high-quality organoids. Here, we demonstrate two engineering elements to improve human brain organoid culture, (1) a human brain extracellular matrix to provide brain-specific cues and (2) a microfluidic device with periodic flow to improve the survival and reduce the variability of organoids. A three-dimensional culture modified with brain extracellular matrix significantly enhanced neurogenesis in developing brain organoids from human induced pluripotent stem cells. Cortical layer development, volumetric augmentation, and electrophysiological function of human brain organoids were further improved in a reproducible manner by dynamic culture in microfluidic chamber devices. Our engineering concept of reconstituting brain-mimetic microenvironments facilitates the development of a reliable culture platform for brain organoids, enabling effective modeling and drug development for human brain diseases.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Dispositivos Lab-On-A-Chip , Neurogênese/fisiologia , Organoides/crescimento & desenvolvimento , Organoides/fisiologia , Animais , Encéfalo/citologia , Meios de Cultura , Fenômenos Eletrofisiológicos , Matriz Extracelular/fisiologia , Estudos de Viabilidade , Perfilação da Expressão Gênica , Humanos , Hidrogéis , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Modelos Anatômicos , Modelos Neurológicos , Neurogênese/genética , Neuroglia/citologia , Neuroglia/fisiologia , Técnicas de Cultura de Órgãos/instrumentação , Técnicas de Cultura de Órgãos/métodos , Organoides/citologia , Suínos
12.
ACS Appl Mater Interfaces ; 13(12): 14037-14049, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33745275

RESUMO

Immunomodulation in the local tissue microenvironment is pivotal for the determination of macrophage phenotypes and regulation of functions necessary for pro-healing effects. Herein, we demonstrate that a lymph node extracellular matrix (LNEM) prepared by the decellularization of lymph node tissues can mimic lymph node microenvironments for immunomodulation in two-dimensional (2D) and three-dimensional (3D) formats. The LNEM exhibits strengthened immunomodulatory effects in comparison to conventional collagen-based platforms. A 3D LNEM hydrogel is more effective than the 2D LNEM coating in inducing M2 macrophage polarization. The 3D LNEM induces macrophage elongation and enhances the M2-type marker expression and the secretion of anti-inflammatory cytokines. Additionally, the phagocytic function of macrophages is improved upon exposure to the intricate 3D LNEM environment. We demonstrate the reduced susceptibility of liver organoids to a hepatotoxic drug when co-cultured with macrophages in a 3D LNEM. This effect could be attributed to the enhanced anti-inflammatory functions and indicates its potential as a drug-testing platform that enables drug responses similar to those observed in vivo. Finally, the implantation of an LNEM hydrogel in a mouse volumetric muscle loss model facilitates the recruitment of host macrophages to the site of injury and enhances macrophage polarization toward the M2 phenotype for tissue healing in vivo. Therefore, 3D immune system-mimicking biomaterials could serve as useful platforms for tissue modeling and regenerative medicine development.


Assuntos
Matriz Extracelular/química , Linfonodos/química , Ativação de Macrófagos , Macrófagos/imunologia , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Matriz Extracelular/imunologia , Imunomodulação , Linfonodos/imunologia , Macrófagos/citologia , Suínos
13.
Biotechnol Bioeng ; 118(4): 1612-1623, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421096

RESUMO

The commensal gut bacterium Akkermansia muciniphila is well known as a promising probiotic candidate that improves host health and prevents diseases. However, the biological interaction of A. muciniphila with human gut epithelial cells has rarely been explored for use in biotherapeutics. Here, we developed an in vitro device that simulates the gut epithelium to elucidate the biological effects of living A. muciniphila via multiomics analysis: the Mimetic Intestinal Host-Microbe Interaction Coculture System (MIMICS). We demonstrated that both human intestinal epithelial cells (Caco-2) and the anaerobic bacterium A. muciniphila can remain viable for 12 h after coculture in the MIMICS. The transcriptomic and proteomic changes (cell-cell junctions, immune responses, and mucin secretion) in gut epithelial cells treated with A. muciniphila closely correspond with those reported in previous in vivo studies. In addition, our proteomic and metabolomic results revealed that A. muciniphila activates glucose and lipid metabolism in gut epithelial cells, leading to an increase in ATP production. This study suggests that A. muciniphila improves metabolism for ATP production in gut epithelial cells and that the MIMICS may be an effective general tool for evaluating the effects of anaerobic bacteria on gut epithelial cells.


Assuntos
Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Akkermansia/crescimento & desenvolvimento , Células CACO-2 , Técnicas de Cocultura , Humanos
14.
RSC Adv ; 10(46): 27864-27873, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35516943

RESUMO

As demands for new antibiotics and strategies to control methicillin-resistant Staphylococcus aureus (MRSA) increase, there have been efforts to obtain more accurate and abundant information about the mechanism of the bacterial responses to antibiotics. However, most of the previous studies have investigated responses to antibiotics without considering the genetic differences between MRSA and methicillin-susceptible S. aureus (MSSA). Here, we initially applied a multi-omics approach into the clinical isolates (i.e., S. aureus WKZ-1 (MSSA) and S. aureus WKZ-2 (MRSA)) that are isogenic except for the mobile genetic element called staphylococcal cassette chromosome mec (SCCmec) type IV to explore the response to ß-lactam antibiotics (oxacillin). First, the isogenic pair showed a similar metabolism without oxacillin treatment. The quantitative proteomics demonstrated that proteins involved in peptidoglycan biosynthesis (MurZ, PBP2, SgtB, PrsA), two-component systems (VrsSR, WalR, SaeSR, AgrA), oxidative stress (MsrA1, MsrB), and stringent response (RelQ) were differentially regulated after the oxacillin treatment of the isogenic isolates. In addition, targeted metabolic profiling showed that metabolites belonging to the building blocks (lysine, glutamine, acetyl-CoA, UTP) of peptidoglycan biosynthesis machinery were specifically decreased in the oxacillin-treated MRSA. These results indicate that the difference in metabolism of this isogenic pair with oxacillin treatment could be caused only by SCCmec type IV. Understanding and investigating the antibiotic response at the molecular level can, therefore, provide insight into drug resistance mechanisms and new opportunities for antibiotics development.

15.
RSC Adv ; 10(40): 23792-23800, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35517354

RESUMO

The halophilic bacterium Pseudoalteromonas phenolica is well known as a promising candidate that enables the recycling of organic wastes at high salinity. However, for industrial applications of P. phenolica further research is required to explore the biological mechanism for maximizing the activities and productivities of this bacterium. In this study, we investigated the osmotic stress resistance and specific protease activities of P. phenolica in a normal-salt medium (0.3 M NaCl) and high-salt medium (1 M NaCl) based on intra- and extracellular multi-omics approaches. Proteins related to betaine and proline biosynthesis were increased under high salt stress. The targeted metabolite analysis found that proline was overproduced and accumulated outside the cell at high salinity, and betaine was accumulated in the cell by activation of biosynthesis as well as uptake. In addition, extracellular serine proteases were shown to be upregulated in response to salt stress by the extracellular proteomic analysis. The specific proteolytic activity assay indicated that the activities of serine proteases, useful enzymes for the recycling of organic wastes, were increased remarkably under high salt stress. Our results suggest that betaine and proline are key osmoprotectant metabolites of P. phenolica, and they can be used for the improvement of protease production and P. phenolica activities for the recycling of high-salt organic wastes in the future.

16.
RSC Adv ; 9(34): 19762-19771, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35519361

RESUMO

Gut microbiota, a complex microbial community inhabiting human or animal intestines recently regarded as an endocrine organ, has a significant impact on human health. Probiotics can modulate gut microbiota and the gut environment by releasing a range of bioactive compounds. Escherichia coli (E. coli) strain Nissle 1917 (EcN), a Gram-negative bacterial strain, has been used to treat gastrointestinal (GI) disorders (i.e., inflammatory bowel disease, diarrhea, ulcerative colitis, and so on). However, endotoxicity of lipopolysaccharide (LPS), a major component of the cell wall of Gram-negative bacteria in the gut, is known to have a strong influence on gut inflammation and maintenance of gut homeostasis. Therefore, characterizing the chemical structure of lipid A which determines the toxicity of LPS is needed to understand nonpathogenic colonization and commensalism properties of EcN in the gut more precisely. In the present study, MALDI multiple-stage mass spectrometry analysis of lipid A extracted from EcN demonstrates that hexaacylated lipid A (m/z 1919.19) contains a glucosamine disaccharide backbone, a myristate, a laurate, four 3-hydroxylmyristates, two phosphates, and phosphoethanolamine (PEA). PEA modification of lipid A is known to contribute to cationic antimicrobial peptide (CAMP) resistance of Gram-negative bacteria. To confirm the role of PEA in CAMP resistance of EcN, minimum inhibitory concentrations (MICs) of polymyxin B and colistin were determined using a wild-type strain and a mutant strain with deletion of eptA gene encoding PEA transferase. Our results confirmed that MICs of polymyxin B and colistin for the wild-type were twice as high as those for the mutant. These results indicate that EcN can more efficiently colonize the intestine through PEA-mediated tolerance despite the presence of CAMPs in human gut such as human defensins. Thus, EcN can be used to help treat and prevent many GI disorders.

17.
Sensors (Basel) ; 15(8): 18416-26, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26225981

RESUMO

In this paper, we propose an AlGaN/GaN high electron mobility transistor (HEMT)-based biosensor for the detection of C-reactive protein (CRP) using a null-balancing circuit. A null-balancing circuit was used to measure the output voltage of the sensor directly. The output voltage of the proposed biosensor was varied by antigen-antibody interactions on the gate surface due to CRP charges. The AlGaN/GaN HFET-based biosensor with null-balancing circuit applied shows that CRP can be detected in a wide range of concentrations, varying from 10 ng/mL to 1000 ng/mL. X-ray photoelectron spectroscopy was carried out to verify the immobilization of self-assembled monolayer with Au on the gated region.


Assuntos
Compostos de Alumínio/química , Técnicas Biossensoriais/instrumentação , Proteína C-Reativa/análise , Elétrons , Gálio/química , Transistores Eletrônicos , Eletricidade , Humanos , Espectroscopia Fotoeletrônica
18.
ACS Nano ; 5(9): 7669-76, 2011 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-21861506

RESUMO

"Memory" is an essential building block in learning and decision-making in biological systems. Unlike modern semiconductor memory devices, needless to say, human memory is by no means eternal. Yet, forgetfulness is not always a disadvantage since it releases memory storage for more important or more frequently accessed pieces of information and is thought to be necessary for individuals to adapt to new environments. Eventually, only memories that are of significance are transformed from short-term memory into long-term memory through repeated stimulation. In this study, we show experimentally that the retention loss in a nanoscale memristor device bears striking resemblance to memory loss in biological systems. By stimulating the memristor with repeated voltage pulses, we observe an effect analogous to memory transition in biological systems with much improved retention time accompanied by additional structural changes in the memristor. We verify that not only the shape or the total number of stimuli is influential, but also the time interval between stimulation pulses (i.e., the stimulation rate) plays a crucial role in determining the effectiveness of the transition. The memory enhancement and transition of the memristor device was explained from the microscopic picture of impurity redistribution and can be qualitatively described by the same equations governing biological memories.

19.
Nano Lett ; 10(4): 1297-301, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20192230

RESUMO

A memristor is a two-terminal electronic device whose conductance can be precisely modulated by charge or flux through it. Here we experimentally demonstrate a nanoscale silicon-based memristor device and show that a hybrid system composed of complementary metal-oxide semiconductor neurons and memristor synapses can support important synaptic functions such as spike timing dependent plasticity. Using memristors as synapses in neuromorphic circuits can potentially offer both high connectivity and high density required for efficient computing.


Assuntos
Nanotecnologia/instrumentação , Redes Neurais de Computação , Neurônios , Sinapses , Nanotecnologia/métodos , Semicondutores , Silício/química , Prata/química
20.
Nano Lett ; 9(2): 870-4, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19206536

RESUMO

We demonstrate large-scale (1 kb) high-density crossbar arrays using a Si-based memristive system. A two-terminal hysteretic resistive switch (memristive device) is formed at each crosspoint of the array and can be addressed with high yield and ON/OFF ratio. The crossbar array can be implemented as either a resistive random-access-memory (RRAM) or a write-once type memory depending on the device configuration. The demonstration of large-scale crossbar arrays with excellent reproducibility and reliability also facilitates further studies on hybrid nano/CMOS systems.


Assuntos
Análise em Microsséries/métodos , Silício/química , Eletrodos , Microscopia Eletrônica de Varredura , Nanofios/química , Nanofios/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...