Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dent ; 141: 104820, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38128820

RESUMO

OBJECTIVES: This study aimed to investigate the antimicrobial properties of three dimensionally-printed dental polymers (3DPs) incorporated with microencapsulated phytochemicals (MPs) and to assess their surface characteristics and cytotoxicity. METHODS: MPs derived from phytoncide oil and their specific chemical components were introduced into suspensions of three microbial species: Streptococcus gordonii, Streptococcus oralis, and Candida albicans. Optical density was measured to determine the microbial growth in the presence of MPs for testing their antimicrobial activity. MPs at 5% (w/w) were mixed with dental polymers and dispersants to 3DP discs. These microbial species were then seeded onto the discs and incubated for 24 h. The antibacterial and antifungal activities of MP-containing 3DPs were evaluated by counting the colony-forming units (n = 3). The biofilm formation on the 3DP was assessed by crystal violet staining assay (n = 3). Microbial viability was determined using a live-dead staining and CLSM observation (n = 3). Surface roughness and water contact angle were assessed (n = 10). Cytotoxicity of MP-containing 3DPs for human gingival fibroblast was evaluated by MTT assay. RESULTS: MPs, particularly (-)-α-pinene, suppressed the growth of all tested microbial species. MP-containing 3DPs significantly reduced the colony count (P ≤ 0.001) and biofilm formation (P ≤ 0.009), of all tested microbial species. Both surface roughness (P < 0.001) and water contact angle (P < 0.001) increased. The cytotoxicity remained unchanged after incorporating MPs to the 3DPs (P = 0.310). CONCLUSIONS: MPs effectively controlled the microbial growth on 3DPs as evidenced by the colony count, biofilm formation, and cell viability. Although MPs modified the surface characteristics, they did not influence the cytotoxicity of 3DPs. CLINICAL SIGNIFICANCE: Integration of MPs into 3DPs could produce dental prostheses or appliances with antimicrobial properties. This approach not only provides a proactive solution to reduce the risk of oral biofilm-related infection but also ensures the safety and biocompatibility of the material, thereby improving dental care.


Assuntos
Anti-Infecciosos , Biofilmes , Humanos , Propriedades de Superfície , Anti-Infecciosos/farmacologia , Candida albicans , Compostos Fitoquímicos/farmacologia , Água
2.
J Prosthet Dent ; 130(6): 936.e1-936.e9, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37802736

RESUMO

STATEMENT OF PROBLEM: Selecting the sterilization method is important because sterilization can alter the surface chemistry of implant materials, including zirconia, and influence their cellular biocompatibility. Studies on the biological effects of sterilization on implant materials are lacking. PURPOSE: The purpose of this in vitro study was to evaluate the biocompatibility of gamma-ray irradiated 3 mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) compared with unirradiated titanium, 3Y-TZP, and pure gold. MATERIAL AND METHODS: Disk-shaped specimens each of commercially pure grade 4 titanium, 3Y-TZP, gamma-rayed 3Y-TZP, and pure gold were prepared and evaluated for osteogenic potential by using a clonal murine cell line of immature osteoblasts derived from mice (MC3T3-E1 cells). The surface topography (n=3), chemical analysis of the disks (n=3), and cell morphology cultured on these surfaces were examined using scanning electron microscopy, confocal laser scanning microscopy, and energy dispersive spectroscopy. Cellular biocompatibility was analyzed for 1 and 3 days after seeding. Cell adhesion and spreading were evaluated using confocal laser scanning microscopy (n=3). Cell proliferation was evaluated using methyl thiazolyl tetrazolium assay (n=3). Kruskal-Wallis and Bonferroni corrections were used to evaluate the statistical significance of the intergroup differences (α=.05). RESULTS: Gamma-ray sterilization of 3Y-TZP showed significantly higher surface roughness compared with titanium and gold (P<.002). On day 1, the proliferation and adhesion of MC3T3-E1 cells cultured on gamma-rayed 3Y-TZP were significantly higher than those cultured on gold (P<.05); however, cell spreading was significantly lower than that of titanium on days 1 and 3 (P<.05). On day 3, cell proliferation of gamma-rayed 3Y-TZP was significantly lower than that of unirradiated 3Y-TZP (P<.05). Cell adhesion of gamma-rayed 3Y-TZP was slightly lower than that of zirconia and titanium but without significant difference (P>.05). CONCLUSIONS: Gamma-rayed zirconia exhibited increased surface roughness compared with titanium and significantly decreased bioactivity compared with titanium and zirconia. The use of gamma-ray sterilization on zirconia is not promising regarding biocompatibility, and the effect of this sterilization method on implant materials warrants further investigation.


Assuntos
Materiais Dentários , Titânio , Camundongos , Animais , Teste de Materiais , Materiais Dentários/química , Zircônio/química , Ítrio/química , Propriedades de Superfície
3.
Int J Implant Dent ; 9(1): 24, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37661243

RESUMO

PURPOSE: The purpose of this in vitro study was to investigate the antibacterial effect and biocompatibility of silver coatings via aerosol deposition on titanium and zirconia surfaces. METHODS: The surfaces of titanium and zirconia specimens were polished and coated with silver via aerosol deposition. After silver coating, the elemental composition, surface roughness and amount of silver released from the coated surfaces were measured. The bacterial growth on the silver-coated surfaces was investigated via crystal violet assay after incubation with Streptococcus gordonii for 24 h, Fusobacterium nucleatum for 72 h and Porphyromonas gingivalis for 48 h. Human gingival fibroblasts and mouse preosteoblasts were also cultured on the silver-coated specimens to examine the biocompatibility of the coating. RESULTS: After silver coating via aerosol deposition, the surface roughness increased significantly, and the released silver ranged from 0.067 to 0.110 ppm. The tested bacteria formed significantly less biofilm on the silver-coated titanium surfaces than on the uncoated titanium surfaces. In contrast, biofilm formation on the silver-coated zirconia surfaces was greater than that on the uncoated zirconia surfaces. Human gingival fibroblasts and mouse preosteoblasts proliferated on the silver-coated surfaces without significant differences from the uncoated surfaces. CONCLUSIONS: Silver coating via aerosol deposition provided an antibacterial effect against oral bacteria on titanium surfaces, whereas it promoted more bacterial growth on zirconia surfaces. The proliferation of fibroblasts and osteoblasts was not significantly affected by the silver coating on both titanium and zirconia surfaces.


Assuntos
Prata , Titânio , Humanos , Animais , Camundongos , Prata/farmacologia , Aerossóis , Antibacterianos/farmacologia
4.
PLoS One ; 18(7): e0287867, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37437045

RESUMO

BACKGROUNDS: A proper disinfection of denture is vital to prevent a fungal infection. A study on the feasibility of microencapsulated phytochemical as complementary disinfectant and its interaction with effervescent tablet immersion on denture base resin is lacking. OBJECTIVES: The aim of this study was to examine the feasibility of phytochemical-filled microcapsules as disinfectant for the inhibition of Candida albicans (C. albicans) attachment on the denture base produced by digital light processing (DLP). METHODS: 54 denture base specimens uniformly mixed with or without 5wt% phytochemical-filled microcapsules were prepared using DLP. Fungal cells were inoculated onto the surfaces of the specimens, which were divided into three different disinfection treatment groups (n = 9): 1) none, 2) sterile tap water immersion for 15 min, and 3) effervescent tablet immersion for 15 min. After each treatment, the biofilm on denture surface was stained with a crystal violet solution to measure the absorbance. The number of fungal colonies was counted as colony-forming units (CFU) per mL. Morphological changes were examined by microscopy. An aligned rank transform analysis of variance was performed to analyze the interaction of presence of microcapsule and disinfection condition, with statistical significance set at P < 0.05. RESULTS: Both for the absorbance and CFU, there was no significant interaction between the presence of microcapsules and disinfection conditions (P = 0.543 and P = 0.077, respectively). The presence of microcapsules was statistically significant (both P < 0.001), while the effect of disinfection condition was not significant (P = 0.165 and P = 0.189, respectively). Morphological changes in fungi were detected in the groups containing microcapsules, whereas undamaged hyphal structures were found in those without microcapsules, irrespective of disinfection treatments. CONCLUSIONS: The presence of phytochemical-filled microcapsules significantly reduced the adhesion of C. albicans and inhibited its proliferation on denture surfaces, regardless of disinfection conditions.


Assuntos
Desinfetantes , Candida albicans , Cápsulas , Bases de Dentadura , Estudos de Viabilidade , Compostos Fitoquímicos , Proliferação de Células
5.
Sci Rep ; 13(1): 11142, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429939

RESUMO

The aim of this study was to investigate the surface characteristics and evaluate the bone-implant interfaces of injection molded zirconia implants with or without surface treatment and compare them with those of conventional titanium implants. Four different zirconia and titanium implant groups (n = 14 for each group) were prepared: injection-molded zirconia implants without surface treatment (IM ZrO2); injection-molded zirconia implants with surface treatment via sandblasting (IM ZrO2-S); turned titanium implants (Ti-turned); and titanium implants with surface treatments via sandblasting with large-grit particles and acid-etching (Ti-SLA). Scanning electron microscopy, confocal laser scanning microscopy, and energy dispersive spectroscopy were used to assess the surface characteristics of the implant specimens. Eight rabbits were used, and four implants from each group were placed into the tibiae of each rabbit. Bone-to-implant contact (BIC) and bone area (BA) were measured to evaluate the bone response after 10-day and 28-day healing periods. One-way analysis of variance with Tukey's pairwise comparison was used to find any significant differences. The significance level was set at α = 0.05. Surface physical analysis showed that Ti-SLA had the highest surface roughness, followed by IM ZrO2-S, IM ZrO2, and Ti-turned. There were no statistically significant differences (p > 0.05) in BIC and BA among the different groups according to the histomorphometric analysis. This study suggests that injection-molded zirconia implants are reliable and predictable alternatives to titanium implants for future clinical applications.


Assuntos
Interface Osso-Implante , Lagomorpha , Animais , Humanos , Coelhos , Titânio , Próteses e Implantes , Assistência Odontológica
6.
J Dent ; 137: 104608, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37433380

RESUMO

OBJECTIVES: To investigate differences in the surface properties and microbial adhesion of denture base resins for digital light processing (DLP) with varying resin layer thicknesses (LT), build angles (BA), and resin viscosities. METHODS: Two denture base resins for DLP with different viscosities (high and low) were used to prepare disk specimens applying two manufacturing parameters: 1) LT (50 or 100 µm) and 2) BA (0-, 45-, and 90-degree). Surface roughness and contact angle values were measured on the test surfaces (n=10 per group). Streptococcus oralis and Candida albicans absorbance was measured to assess microorganism attachment (n=6 per group). A three-way analysis of variance (ANOVA) was conducted, considering the main effects and their interactions (viscosity, LT, and BA). Post-hoc multiple pairwise comparisons were performed. All data were analyzed at a level of significance (P) of 0.05. RESULTS: LT and BA significantly affected the surface roughness and contact angle of the specimens, depending on resin viscosity (P<.001). Absorbance measurement showed no significant interaction between the three factors (P>.05). However, significant interactions were observed between viscosity and BA (P<.05) and between LT and BA (P<.05). CONCLUSIONS: Regardless of the viscosity and LT, discs with a 0-degree BA showed the least roughness. High-viscosity specimens fabricated with a 0-degree BA had the lowest contact angle. Regardless of the LT and viscosity, discs with a 0-degree BA showed the lowest S. oralis attachment. Attachment of C. albicans was the least on the disk with 50 µm LT, irrespective of the viscosity. CLINICAL SIGNIFICANCE: Clinicians should consider the effects of LT and BA on surface roughness, contact angle, and microbial adhesion of DLP-generated dentures, which can differ depending on resin viscosity. A 50 µm LT and 0-degree BA can be used with a high-viscosity resin to fabricate denture bases with less microbial adhesion.


Assuntos
Candida albicans , Bases de Dentadura , Viscosidade , Propriedades de Superfície , Análise de Variância , Teste de Materiais
7.
J Dent ; 135: 104598, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356562

RESUMO

OBJECTIVES: To investigate effects of layer thickness, build angle, and viscosity on the mechanical properties and trueness of denture base resins used for digital light processing (DLP). METHODS: Two denture base resins for DLP in different viscosity (high and low) were tested by using two manufacturing parameters:1) layer thickness (LT) (50- or 100-µm) and 2) build angle (BA) (0-, 45-, and 90-degree). disk- and bar-shaped specimens were used to evaluate hardness and flexural strength, respectively. Denture base specimens were used to examine trueness, and the deviation was calculated as the root mean square. Three-way analysis of variance (ANOVA) was conducted to determine the interaction among the three factors (viscosity, LT, and BA). Statistical significance was set at P < .05. RESULTS: Effects of LT and BA on hardness differed according to viscosity, with significant interactions among three factors (P=.027). Regardless of LT or BA, the low-viscosity group had higher hardness than the high-viscosity group (P<.001). In terms of flexural strength, no significant interaction was detected between the factors (P=.212), however, the effects of LT and BA were significant (P=.003 and P<.001, respectively). Regarding trueness, a significant interaction was observed between viscosity and BA (P=.001). Low-viscosity group had higher trueness than high-viscosity group when the 45- and 90-degree BA were applied (P<.001). CONCLUSIONS: LT and BA significantly affected the mechanical properties and trueness of the 3DP denture base, depending on the viscosity. For hardness and trueness, using low-viscosity resin and manufacturing with 50-µm LT and 45-degree BA are recommended. CLINICAL SIGNIFICANCE: Resin viscosity affects the influence of LT and BA on the hardness, flexural strength, and trueness of DLP-generated denture bases. A 50-µm LT and 45-degree BA can be used with a low-viscosity resin to fabricate denture bases with higher hardness and trueness.


Assuntos
Bases de Dentadura , Resistência à Flexão , Viscosidade , Dureza , Teste de Materiais , Propriedades de Superfície
8.
J Prosthet Dent ; 130(2): 265.e1-265.e7, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37353410

RESUMO

STATEMENT OF PROBLEM: Studies on the effects of postprocessing conditions on the physical properties, degree of conversion (DC), and biocompatibility of denture bases produced by digital light processing are lacking. PURPOSE: The purpose of this in vitro study was to evaluate the effects of the atmosphere during postpolymerization and of postpolymerization time on the flexural strength, Vickers hardness, DC, cytotoxicity, and residual monomer content of denture bases. MATERIAL AND METHODS: Six different groups of bar- and disk-shaped specimens from the denture base resin were produced, considering 2 different atmospheres (air and nitrogen) and 3 different postpolymerization times (5, 10, and 20 minutes). To determine the physical properties, the flexural strength and Vickers hardness were measured. Fourier transform infrared spectrometry was used to calculate DC. Cytotoxicity was assessed from the effect on human gingival fibroblasts. The residual monomer content was determined by using high-performance liquid chromatography. Based on the normality test by the Shapiro-Wilk method, a nonparametric factorial analysis of variances was conducted (α=.05). RESULTS: A significant interaction was detected between the atmosphere and postpolymerization time for hardness (P<.001) but no interaction for strength, DC, or cytotoxicity (P=.826, P=.786, and P=.563, respectively). Hardness was significantly affected by the postpolymerization time in the groups with the nitrogen atmosphere (P<.001). DC was significantly affected by the atmosphere (P=.012), whereas strength and cytotoxicity were not (P=.500 and P=.299, respectively). Cytotoxicity was significantly affected by the postpolymerization time (P<.001), but strength and DC were not (P=.482 and P=.167, respectively). Residual monomers were not detected after ≥10-minute postpolymerization time. CONCLUSIONS: The atmosphere significantly affected hardness and DC, whereas the postpolymerization time significantly affected hardness, DC, cytotoxicity, and residual monomer content. Denture bases produced in a nitrogen atmosphere and with the 10-minute postpolymerization time showed sufficient hardness, DC, and no cytotoxicity.


Assuntos
Resinas Acrílicas , Bases de Dentadura , Humanos , Resinas Acrílicas/química , Maleabilidade , Teste de Materiais , Resistência à Flexão , Dureza , Propriedades de Superfície
9.
J Dent Sci ; 18(2): 517-525, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37123448

RESUMO

Background/purpose: Dental implants are inevitably exposed to bacteria in oral cavity. Understanding the colonization of bacteria on implant surface is necessary to prevent bacteria-related inflammation surrounding dental implants. The purpose of this study was to investigate the effect of surface properties on biofilm formation on the implant surface. Materials and methods: One early colonizer, Streptococcus gordonii (S. gordonii), and two late colonizers, Fusobacterium nucleatum (F. nucleatum) and Porphyromonas gingivalis (P. gingivalis), were grown on the titanium and zirconia surfaces with two types of surface roughness for 24 and 72 h. Each bacterial biofilm on specimens was quantified using crystal violet assay and observed by scanning electron microscopy. Results: S. gordonii formed more biofilm on the titanium surface than zirconia at the same roughness and more biofilm on the rough surface than smooth one of the same materials at 24 and 72 h of incubation. F. nucleatum adhered on all the surfaces at 24 h and proliferated actively on the surfaces except smooth zirconia at 72 h. P. gingivalis proliferated vigorously on the surfaces at 72 h while it scarcely adhered at 24 h. There was no consistent correlation between contact angle and biofilm formation of the three bacteria. Conclusion: The three bacteria proliferated most on the rough titanium surface and least on the smooth zirconia surface. In addition, the proliferation was affected by the bacterial species as well as the surface properties.

10.
BMC Oral Health ; 22(1): 611, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522725

RESUMO

BACKGROUND: Studies on the antifungal activity, flexural strength, Vickers hardness, and intaglio surface trueness of three-dimensionally printed (3DP) denture bases with microencapsulated phytochemicals with respect to changes in post-polymerization time (PPT) are lacking. METHODS: Specimens of various shapes and dimensions were fabricated with a 3DP denture base resin mixed with 5 wt% phytoncide-filled microcapsules. Each specimen was subjected to different PPT protocols of 5, 10, 20, and 30 min. Specimens without microcapsules with 5-min PPT were used as the negative control group. Cell colonies were counted to evaluate antifungal activity. Three-point bending and Vickers hardness tests were performed to measure the flexural strengths and hardness of the specimens. Fourier-transform infrared spectrometry was used to inspect the degree of conversion (DC). The intaglio surface trueness was measured using root-mean-square estimates calculated by superimposition analysis. A non-parametric Kruskal-Wallis test or one-way analysis of variance was performed (α = 0.05). RESULTS: The specimens with microcapsules and 10-min PPT showed the highest antifungal activity among the tested groups. Compared with the positive control group (5-min PPT), the specimens with PPTs of 10 min or longer showed significantly higher mean flexural strength, higher DC, greater hardness, and better trueness (all, P < 0.05). Except for the difference in antifungal activity, no statistically significant differences were detected between the specimens subjected to 10-, 20-, and 30-min PPT. CONCLUSION: The 3DP denture base filled with microencapsulated phytoncide showed different antifungal activity and physical properties on changing PPT. The 3DP denture base containing phytoncide-filled microcapsules at 5 wt% concentration and subjected to 10-min PPT exhibited sufficient antifungal activity as well as mechanical properties and accuracy within clinical acceptance.


Assuntos
Antifúngicos , Bases de Dentadura , Humanos , Antifúngicos/farmacologia , Polimerização , Cápsulas , Propriedades de Superfície , Impressão Tridimensional , Compostos Fitoquímicos , Teste de Materiais
11.
BMC Oral Health ; 22(1): 178, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562746

RESUMO

BACKGROUND: Studies on the material properties and dimensional accuracy of three-dimensionally (3D) printed denture base containing microcapsules with antifungal phytochemicals are lacking. METHODS: Two types of phytochemicals (phytoncide A and B) with antifungal activity were microencapsulated. The 3D-printed denture base specimens with minimum and maximum effective concentrations of microcapsules (6 and 8 wt% for phytoncide A; 15 and 25 wt% for phytoncide B) were prepared. The morphological changes of C. albicans on 3D-printed denture base with microcapsules was microscopically observed. The degree of conversion of 3D-printed denture base with microcapsules investigated. The microhardness and flexural strength values were also measured to evaluate the mechanical properties of 3D-printed denture bases. The dimensional accuracy (trueness) of the specimens with microcapsules was measured as root-mean-square values (RMS) for the whole, upper, and side surfaces of the specimens as well as their total height. For the degree of conversion, microhardness, and flexural strength values, the Kruskal-Wallis analysis and a post-hoc comparison using Mann-Whitney U test was performed. For the analysis of trueness (RMS), the one-way analysis of variance and a post-hoc comparison using Tukey's method was conducted (α = 0.05). RESULTS: At both maximum and minimum effective concentrations of microcapsules, cell surface disruption or membrane breakdown of fungal cells were observed in the specimens. The groups with microcapsules (both phytoncide A- and B-filled) showed significantly lower microhardness and elastic modulus values than the control group (all, P = 0.001). For the trueness, all the RMS values of the whole, upper, and side surfaces of the specimens with microcapsules were less than 100 µm, although significantly higher than those without (all, P = 0.001). The mean flexural strength values of the groups with phytoncide A-filled microcapsule were higher than 65 MPa, not statistically different from that of the control group (all, P > 0.05). However, the groups with phytoncide B-filled microcapsules showed significantly lower values than the control (all, P = 0.001). CONCLUSIONS: Within the limitations of this in-vitro study, the 3D-printed denture base containing 6 wt% of phytoncide A-filled microcapsules was clinically acceptable in terms of antifungal activity, dimensional accuracy, and flexural strength.


Assuntos
Antifúngicos , Bases de Dentadura , Antifúngicos/farmacologia , Candida albicans , Cápsulas , Humanos , Teste de Materiais , Monoterpenos , Compostos Fitoquímicos , Impressão Tridimensional , Propriedades de Superfície
12.
J Dent ; 120: 104098, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35321828

RESUMO

OBJECTIVES: To produce three-dimensionally (3D) printed removable denture bases with antifungal activity using microencapsulation of phytochemicals that inhibit Candida albicans growth. METHODS: Two types of phytoncide oil extract A and B were micro-encapsulated. The phytoncide-filled microcapsules were mixed with denture base resin for 3D printing with various concentration conditions, and manufactured into the discs by digital light processing. The microcapsule concentrations in 3D-printed discs were 2, 4, 6 and 8wt% for the phytoncide oil A, and 5, 10, 15, 20, and 25wt% for the phytoncide oil B. Nine groups with different microcapsule concentrations and a control group were prepared (n = 5). Microcapsule-containing 3D-printed denture base resin discs were evaluated in terms of surface roughness, polymerization, antifungal activity, and its persistence against C. albicans, and cytotoxicity. RESULTS: There was no significant difference amongst the surface roughness values of all discs. The polymerization of 3D-printed resin disc with microcapsule was different between phytoncide type A and B. The discs with phytoncide-filled microcapsules at 6wt% for type A and 15wt% for type B showed significant antifungal activities against C. albicans at 4 weeks. All discs were reported to be non-cytotoxic to human gingival fibroblasts. CONCLUSIONS: Denture base resin discs with antifungal activities were successfully manufactured using phytoncide micro-encapsulation and digital light processing. Considering the antifungal effect and its persistence, surface roughness, polymerization, and cytotoxicity, the optimal microcapsule concentrations for 3D-printed denture bases were 6wt% and 15wt% for phytoncide A and B, respectively. CLINICAL SIGNIFICANCE: Using micro-encapsulation of phytochemicals such as phytoncide oil, denture base resin materials with antifungal activities can be successfully fabricated by digital light processing.


Assuntos
Antifúngicos , Bases de Dentadura , Antifúngicos/farmacologia , Candida albicans , Cápsulas , Bases de Dentadura/microbiologia , Humanos , Monoterpenos , Impressão Tridimensional , Propriedades de Superfície
13.
J Adv Prosthodont ; 14(6): 335-345, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36685792

RESUMO

PURPOSE: This in vitro study aimed to evaluate the surface characteristics of a full veneer crown fabricated chairside (CS) from a (Y, Nb)-TZP zirconia block in response to conventional zirconia grinding and polishing. MATERIALS AND METHODS: Zirconia crowns (n = 40) were first prepared and divided into two groups of materials: Labside (LS) and CS, after which each specimen went through a five-step grinding and polishing procedure. Following each surface treatment, surface characteristics were analyzed using confocal laser microscopy (CLSM), average surface roughness (Ra) values were processed from the profile data through Gaussian filtering, and X-ray diffraction pattern analysis was performed to evaluate the monoclinic (M) phase content. Then, a representative specimen was selected for field-emission scanning electron microscopy (FE-SEM), followed by a final analysis of the roughness and X-ray diffraction of the specimens using the independent t-test and repeated measures analysis of variance (RM-ANOVA). RESULTS: In every group, polishing significantly reduced the Ra values (P < .001). There was no significant difference in Ra between the polished state CS and LS. Furthermore, CLSM and FE-SEM investigations revealed that even though grain exposure was visible in CS specimens throughout the as-delivered and ground states, the exposure was reduced after polishing. Moreover, while no phase transformation was visible in the LS, phase transformation was visible in CS after every surface treatment, with the M phase content of the CS group showing a significant reduction after polishing (P < .001). CONCLUSION: Within the limits of this study, clinically acceptable level of surface finishing of (Y, Nb)-TZP can be achieved after conventional zirconia polishing sequence.

14.
Materials (Basel) ; 12(13)2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31261627

RESUMO

Ultraviolet (UV) photofunctionalization has been suggested as an effective method to enhance the osseointegration of titanium surface. In this study, machined surface treated with UV light (M + UV) was compared to sandblasted, large-grit, acid-etched (SLA) surface through in vitro and in vivo studies. Groups of titanium specimens were defined as machined (M), SLA, and M + UV for the disc type, and M + UV and SLA for the implant. The discs and implants were assessed using scanning electron microscopy, confocal laser scanning microscopy, electron spectroscopy for chemical analysis, and the contact angle. Additionally, we evaluated the cell attachment, proliferation assay, and real-time polymerase chain reaction for the MC3T3-E1 cells. In a rabbit tibia model, the implants were examined to evaluate the bone-to-implant contact ratio and the bone area. In the M + UV group, we observed the lower amount of carbon, a 0°-degree contact angle, and enhanced osteogenic cell activities (p < 0.05). The histomorphometric analysis showed that a higher bone-to-implant contact ratio was found in the M + UV implant at 10 days (p < 0.05). In conclusion, the UV photofunctionalization of a Ti dental implant with M surface attained earlier osseointegration than SLA.

15.
J Adv Prosthodont ; 10(2): 147-154, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29713436

RESUMO

PURPOSE: This study was performed to evaluate the osteogenic potential of 3mol% yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP) and niobium oxide containing Y-TZPs with specific ratios, new (Y,Nb)-TZPs, namely YN4533 and YN4533/Al20 discs. MATERIALS AND METHODS: 3Y-TZP, YN4533 and YN4533/Al20 discs (15 mm diameter and 1 mm thickness) were prepared and their average surface roughness (Ra) and surface topography were analyzed using 3-D confocal laser microscope (CLSM) and scanning electron microscope (SEM). Mouse pre-osteoblast MC3T3-E1 cells were seeded onto all zirconia discs and evaluated with regard to cell attachment and morphology by (CLSM), cell proliferation by PicoGreen assay, and cell differentiation by Reverse-Transcription PCR and Quantitative Real-Time PCR, and alkaline phosphatase (Alp) staining. RESULTS: The cellular morphology of MC3T3-E1 pre-osteoblasts was more stretched on a smooth surface than on a rough surface, regardless of the material. Cellular proliferation was higher on smooth surfaces, but there were no significant differences between 3Y-TZP, YN4533, and YN4533/Al20. Osteoblast differentiation patterns on YN4533 and YN4533/Al20 were similar to or slightly higher than seen in 3Y-TZP. Although there were no significant differences in bone marker gene expression (alkaline phosphatase and osteocalcin), Alp staining indicated better osteoblast differentiation on YN4533 and YN4533/Al20 compared to 3Y-TZP. CONCLUSION: Based on these results, niobium oxide containing Y-TZPs have comparable osteogenic potential to 3Y-TZP and are expected to be suitable alternative ceramics dental implant materials to titanium for aesthetically important areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...