Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Immunol ; 23(1): 135-145, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34937918

RESUMO

Memory B cells (MBCs) protect the body from recurring infections. MBCs differ from their naive counterparts (NBCs) in many ways, but functional and surface marker differences are poorly characterized. In addition, although mice are the prevalent model for human immunology, information is limited concerning the nature of homology in B cell compartments. To address this, we undertook an unbiased, large-scale screening of both human and mouse MBCs for their differential expression of surface markers. By correlating the expression of such markers with extensive panels of known markers in high-dimensional flow cytometry, we comprehensively identified numerous surface proteins that are differentially expressed between MBCs and NBCs. The combination of these markers allows for the identification of MBCs in humans and mice and provides insight into their functional differences. These results will greatly enhance understanding of humoral immunity and can be used to improve immune monitoring.


Assuntos
Linfócitos B/imunologia , Memória Imunológica/imunologia , Células B de Memória/imunologia , Animais , Linfócitos B/metabolismo , Biomarcadores/metabolismo , Feminino , Citometria de Fluxo/métodos , Humanos , Imunidade Humoral/imunologia , Masculino , Células B de Memória/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fenótipo
2.
Eur J Immunol ; 51(7): 1774-1784, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33772778

RESUMO

Optimal vaccines are needed for sustained suppression of SARS-CoV-2 and other novel coronaviruses. Here, we developed a recombinant type 5 adenovirus vector encoding the gene for the SARS-CoV-2 S1 subunit antigen (Ad5.SARS-CoV-2-S1) for COVID-19 immunization and evaluated its immunogenicity in mice. A single immunization with Ad5.SARS-CoV-2-S1 via S.C. injection or I.N delivery induced robust antibody and cellular immune responses. Vaccination elicited significant S1-specific IgG, IgG1, and IgG2a endpoint titers as early as 2 weeks, and the induced antibodies were long lasting. I.N. and S.C. administration of Ad5.SARS-CoV-2-S1 produced S1-specific GC B cells in cervical and axillary LNs, respectively. Moreover, I.N. and S.C. immunization evoked significantly greater antigen-specific T-cell responses compared to unimmunized control groups with indications that S.C. injection was more effective than I.N. delivery in eliciting cellular immune responses. Mice vaccinated by either route demonstrated significantly increased virus-specific neutralization antibodies on weeks 8 and 12 compared to control groups, as well as BM antibody forming cells (AFC), indicative of long-term immunity. Thus, this Ad5-vectored SARS-CoV-2 vaccine candidate showed promising immunogenicity following delivery to mice by S.C. and I.N. routes of administration, supporting the further development of Ad-based vaccines against COVID-19 and other infectious diseases for sustainable global immunization programs.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adenoviridae/genética , Adenoviridae/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos BALB C , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Linfócitos T/imunologia , Vacinação
3.
Nat Immunol ; 21(3): 331-342, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32066950

RESUMO

Germinal center B cells (GCBCs) are critical for generating long-lived humoral immunity. How GCBCs meet the energetic challenge of rapid proliferation is poorly understood. Dividing lymphocytes typically rely on aerobic glycolysis over oxidative phosphorylation for energy. Here we report that GCBCs are exceptional among proliferating B and T cells, as they actively oxidize fatty acids (FAs) and conduct minimal glycolysis. In vitro, GCBCs had a very low glycolytic extracellular acidification rate but consumed oxygen in response to FAs. [13C6]-glucose feeding revealed that GCBCs generate significantly less phosphorylated glucose and little lactate. Further, GCBCs did not metabolize glucose into tricarboxylic acid (TCA) cycle intermediates. Conversely, [13C16]-palmitic acid labeling demonstrated that GCBCs generate most of their acetyl-CoA and acetylcarnitine from FAs. FA oxidation was functionally important, as drug-mediated and genetic dampening of FA oxidation resulted in a selective reduction of GCBCs. Hence, GCBCs appear to uncouple rapid proliferation from aerobic glycolysis.


Assuntos
Linfócitos B/metabolismo , Ácidos Graxos/metabolismo , Centro Germinativo/metabolismo , Animais , Linfócitos B/imunologia , Proliferação de Células , Metabolismo Energético , Ácidos Graxos não Esterificados/metabolismo , Expressão Gênica , Centro Germinativo/citologia , Centro Germinativo/imunologia , Glucose/metabolismo , Glicólise/genética , Técnicas In Vitro , Metaboloma , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Oxirredução , Fosforilação Oxidativa , Consumo de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...