Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 35(31): 10949-62, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26245959

RESUMO

Acetylcholine receptors (AChRs) are heteromeric membrane proteins essential for neurotransmission at the neuromuscular junction. Previous work showed that muscle denervation increases expression of AChR mRNAs due to transcriptional activation of AChR subunit genes. However, it remains possible that post-transcriptional mechanisms are also involved in controlling the levels of AChR mRNAs following denervation. We examined whether post-transcriptional events indeed regulate AChR ß-subunit mRNAs in response to denervation. First, in vitro stability assays revealed that the half-life of AChR ß-subunit mRNAs was increased in the presence of denervated muscle protein extracts. A bioinformatics analysis revealed the existence of a conserved AU-rich element (ARE) in the 3'-untranslated region (UTR) of AChR ß-subunit mRNA. Furthermore, denervation of mouse muscle injected with a luciferase reporter construct containing the AChR ß-subunit 3'UTR, caused an increase in luciferase activity. By contrast, mutation of this ARE prevented this increase. We also observed that denervation increased expression of the RNA-binding protein human antigen R (HuR) and induced its translocation to the cytoplasm. Importantly, HuR binds to endogenous AChR ß-subunit transcripts in cultured myotubes and in vivo, and this binding is increased in denervated versus innervated muscles. Finally, p38 MAPK, a pathway known to activate HuR, was induced following denervation as a result of MKK3/6 activation and a decrease in MKP-1 expression, thereby leading to an increase in the stability of AChR ß-subunit transcripts. Together, these results demonstrate the important contribution of post-transcriptional events in regulating AChR ß-subunit mRNAs and point toward a central role for HuR in mediating synaptic gene expression. SIGNIFICANCE STATEMENT: Muscle denervation is a convenient model to examine expression of genes encoding proteins of the neuromuscular junction, especially acetylcholine receptors (AChRs). Despite the accepted model of AChR regulation, which implicates transcriptional mechanisms, it remains plausible that such events cannot fully account for changes in AChR expression following denervation. We show that denervation increases expression of the RNA-binding protein HuR, which in turn, causes an increase in the stability of AChR ß-subunit mRNAs in denervated muscle. Our findings demonstrate for the first time the contribution of post-transcriptional events in controlling AChR expression in skeletal muscle, and points toward a central role for HuR in mediating synaptic development while also paving the way for developing RNA-based therapeutics for neuromuscular diseases.


Assuntos
Proteínas ELAV/metabolismo , Músculo Esquelético/inervação , Músculo Esquelético/metabolismo , Receptores Colinérgicos/metabolismo , Animais , Células Cultivadas , Proteínas ELAV/genética , Proteína Semelhante a ELAV 1 , Feminino , Membro Posterior/inervação , Camundongos , Denervação Muscular , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citologia , Junção Neuromuscular/fisiologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Receptores Colinérgicos/genética
2.
Int J Biochem Cell Biol ; 45(10): 2309-21, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23845739

RESUMO

ß2-Agonists are traditionally used for the treatment of bronchospasm associated with asthma and the treatment of symptomatic patients with COPD. However, ß2-agonists are also powerful anabolic agents that trigger skeletal muscle hypertrophy. Investigating the effects of ß2-agonists in skeletal muscle over the past 30 years in different animal models has led to the identification of potential therapeutic applications in several muscle wasting disorders, including neuromuscular diseases, cancer cachexia, sepsis or thermal injury. In these conditions, numerous studies indicate that ß2-agonists can attenuate and/or reverse the decrease in skeletal muscle mass and associated weakness in animal models of muscle wasting but also in human patients. The purpose of this review is to present the biological and clinical significance of ß2-agonists for the treatment of skeletal muscle wasting. After the description of the molecular mechanisms involved in the hypertrophy and anti-atrophy effect of ß2-agonists, we will review the anti-atrophy effects of ß2-agonist administration in several animal models and human pathologies associated with or leading to skeletal muscle wasting. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.


Assuntos
Agonistas Adrenérgicos beta/uso terapêutico , Atrofia Muscular/tratamento farmacológico , Doenças Musculares/tratamento farmacológico , Animais , Humanos , Atrofia Muscular/patologia , Doenças Musculares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...