Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Aging ; 81: 177-189, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31306812

RESUMO

Parkinson's disease (PD) is often managed with L-3,4-dihydroxyphenylalanine (L-DOPA), which is still the gold standard to relieve the clinical motor symptoms of PD. However, chronic use of L-DOPA leads to significant motor complications, especially L-DOPA-induced dyskinesia (LID), which limit the therapeutic benefit. Few options are available for the pharmacological management of LID partly due to the inadequacy of our mechanistic understanding of the syndrome. We focused on the role of the histamine (HA) H2 receptor (H2R) in the striatum, which others have shown to be involved in the development of LID. We generated LID in a hemiparkinsonian mouse model and tested the signaling effects of ranitidine, an H2R antagonist. We used histidine decarboxylase deficient mice (Hdc-Ko) which lacks HA to study the role of G-protein-coupled receptor kinases (GRKs) in HA deficiency. Loss of HA in Hdc-Ko mice did not result in the downregulation of GRKs, especially GRK3 and GRK6, which were previously found to be reduced in hemiparkinsonian animal models. Ranitidine, when given along with L-DOPA, normalized the expression of GRK3 in the dopamine-depleted striatum thereby inhibiting LID in mice. The extracellular signal regulated kinase and ΔFosB signaling pathways were attenuated in the lesioned striatum when ranitidine was combined with L-DOPA than L-DOPA alone. These results demonstrate that ranitidine inhibits LID by normalizing the levels of GRK3, extracellular signal regulated kinase activation, and FosB accumulation in the dopamine-depleted striatum via HA H2R antagonism.


Assuntos
Discinesia Induzida por Medicamentos/etiologia , Discinesia Induzida por Medicamentos/prevenção & controle , Quinase 3 de Receptor Acoplado a Proteína G/metabolismo , Antagonistas dos Receptores H2 da Histamina/uso terapêutico , Levodopa/efeitos adversos , Doença de Parkinson/tratamento farmacológico , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ranitidina/uso terapêutico , Animais , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Levodopa/uso terapêutico , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Doença de Parkinson/metabolismo , Receptores Histamínicos H2
2.
Sci Transl Med ; 9(407)2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28904225

RESUMO

Treatment of type 2 diabetes mellitus continues to pose an important clinical challenge, with most existing therapies lacking demonstrable ability to improve cardiovascular outcomes. The atheroprotective peptide apelin (APLN) enhances glucose utilization and improves insulin sensitivity. However, the mechanism of these effects remains poorly defined. We demonstrate that the expression of APLNR (APJ/AGTRL1), the only known receptor for apelin, is predominantly restricted to the endothelial cells (ECs) of multiple adult metabolic organs, including skeletal muscle and adipose tissue. Conditional endothelial-specific deletion of Aplnr (AplnrECKO ) resulted in markedly impaired glucose utilization and abrogation of apelin-induced glucose lowering. Furthermore, we identified inactivation of Forkhead box protein O1 (FOXO1) and inhibition of endothelial expression of fatty acid (FA) binding protein 4 (FABP4) as key downstream signaling targets of apelin/APLNR signaling. Both the Apln-/- and AplnrECKO mice demonstrated increased endothelial FABP4 expression and excess tissue FA accumulation, whereas concurrent endothelial Foxo1 deletion or pharmacologic FABP4 inhibition rescued the excess FA accumulation phenotype of the Apln-/- mice. The impaired glucose utilization in the AplnrECKO mice was associated with excess FA accumulation in the skeletal muscle. Treatment of these mice with an FABP4 inhibitor abrogated these metabolic phenotypes. These findings provide mechanistic insights that could greatly expand the therapeutic repertoire for type 2 diabetes and related metabolic disorders.


Assuntos
Receptores de Apelina/metabolismo , Apelina/metabolismo , Endotélio/metabolismo , Ácidos Graxos/metabolismo , Glucose/metabolismo , Envelhecimento/metabolismo , Animais , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteína Forkhead Box O1/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Camundongos Knockout , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...