Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Immunity ; 56(8): 1778-1793.e10, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37463581

RESUMO

Unlike macrophage networks composed of long-lived tissue-resident cells within specific niches, conventional dendritic cells (cDCs) that generate a 3D network in lymph nodes (LNs) are short lived and continuously replaced by DC precursors (preDCs) from the bone marrow (BM). Here, we examined whether specific anatomical niches exist within which preDCs differentiate toward immature cDCs. In situ photoconversion and Prtn3-based fate-tracking revealed that the LN medullary cords are preferential entry sites for preDCs, serving as specific differentiation niches. Repopulation and fate-tracking approaches demonstrated that the cDC1 network unfolded from the medulla along the vascular tree toward the paracortex. During inflammation, collective maturation and migration of resident cDC1s to the paracortex created discontinuity in the medullary cDC1 network and temporarily impaired responsiveness. The decrease in local cDC1 density resulted in higher Flt3L availability in the medullary niche, which accelerated cDC1 development to restore the network. Thus, the spatiotemporal development of the cDC1 network is locally regulated in dedicated LN niches via sensing of cDC1 densities.


Assuntos
Linfonodos , Macrófagos , Diferenciação Celular , Células Dendríticas
2.
Kidney Int ; 104(2): 279-292, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37098380

RESUMO

Urinary tract infections are common. Here, we delineate a role of extracellular DNA trap (ET) formation in kidney antibacterial defense and determine mechanisms of their formation in the hyperosmotic environment of the kidney medulla. ET of granulocytic and monocytic origin were present in the kidneys of patients with pyelonephritis along with systemically elevated citrullinated histone levels. Inhibition of the transcription coregulatory, peptidylarginine deaminase 4 (PAD4), required for ET formation, prevented kidney ET formation and promoted pyelonephritis in mice. ETs predominantly accumulated in the kidney medulla. The role of medullary sodium chloride and urea concentrations in ET formation was then investigated. Medullary-range sodium chloride, but not urea, dose-, time- and PAD4-dependently induced ET formation even in the absence of other stimuli. Moderately elevated sodium chloride promoted myeloid cell apoptosis. Sodium gluconate also promoted cell death, proposing a role for sodium ions in this process. Sodium chloride induced myeloid cell calcium influx. Calcium ion-free media or -chelation reduced sodium chloride-induced apoptosis and ET formation while bacterial lipopolysaccharide amplified it. Autologous serum improved bacterial killing in the presence of sodium chloride-induced ET. Depletion of the kidney sodium chloride gradient by loop diuretic therapy diminished kidney medullary ET formation and increased pyelonephritis severity. Thus, our data demonstrate that ETs may protect the kidney against ascending uropathogenic E. coli and delineate kidney medullary range sodium chloride concentrations as novel inducers of programmed myeloid cell death.


Assuntos
Armadilhas Extracelulares , Pielonefrite , Camundongos , Animais , Cloreto de Sódio/farmacologia , Neutrófilos , Monócitos , Cálcio , Escherichia coli , Rim , Pielonefrite/tratamento farmacológico , DNA , Ureia
3.
Trends Immunol ; 42(6): 469-479, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33962888

RESUMO

The Western diet is rich in salt, and a high salt diet (HSD) is suspected to be a risk factor for cardiovascular diseases. It is now widely accepted that an experimental HSD can stimulate components of the immune system, potentially exacerbating certain autoimmune diseases, or alternatively, improving defenses against certain infections, such as cutaneous leishmaniasis. However, recent findings show that an experimental HSD may also aggravate other infections (e.g., pyelonephritis or systemic listeriosis). Here, we discuss the modulatory effects of a HSD on the microbiota, metabolic signaling, hormonal responses, local sodium concentrations, and their effects on various immune cell types in different tissues. We describe how these factors are integrated, resulting either in immune stimulation or suppression in various tissues and disease settings.


Assuntos
Microbiota , Sódio , Dieta , Sistema Imunitário , Cloreto de Sódio na Dieta
4.
Sci Transl Med ; 12(536)2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32213629

RESUMO

The Western diet is rich in salt, which poses various health risks. A high-salt diet (HSD) can stimulate immunity through the nuclear factor of activated T cells 5 (Nfat5)-signaling pathway, especially in the skin, where sodium is stored. The kidney medulla also accumulates sodium to build an osmotic gradient for water conservation. Here, we studied the effect of an HSD on the immune defense against uropathogenic E. coli-induced pyelonephritis, the most common kidney infection. Unexpectedly, pyelonephritis was aggravated in mice on an HSD by two mechanisms. First, on an HSD, sodium must be excreted; therefore, the kidney used urea instead to build the osmotic gradient. However, in contrast to sodium, urea suppressed the antibacterial functionality of neutrophils, the principal immune effectors against pyelonephritis. Second, the body excretes sodium by lowering mineralocorticoid production via suppressing aldosterone synthase. This caused an accumulation of aldosterone precursors with glucocorticoid functionality, which abolished the diurnal adrenocorticotropic hormone-driven glucocorticoid rhythm and compromised neutrophil development and antibacterial functionality systemically. Consistently, under an HSD, systemic Listeria monocytogenes infection was also aggravated in a glucocorticoid-dependent manner. Glucocorticoids directly induced Nfat5 expression, but pharmacological normalization of renal Nfat5 expression failed to restore the antibacterial defense. Last, healthy humans consuming an HSD for 1 week showed hyperglucocorticoidism and impaired antibacterial neutrophil function. In summary, an HSD suppresses intrarenal neutrophils Nfat5-independently by altering the local microenvironment and systemically by glucocorticoid-mediated immunosuppression. These findings argue against high-salt consumption during bacterial infections.


Assuntos
Escherichia coli , Neutrófilos , Animais , Antibacterianos , Dieta , Camundongos , Cloreto de Sódio na Dieta
5.
Cell Stem Cell ; 22(2): 262-276.e7, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29451855

RESUMO

Despite much work studying ex vivo multipotent stromal cells (MSCs), the identity and characteristics of MSCs in vivo are not well defined. Here, we generated a CD73-EGFP reporter mouse to address these questions and found EGFP+ MSCs in various organs. In vivo, EGFP+ mesenchymal cells were observed in fetal and adult bones at proliferative ossification sites, while in solid organs EGFP+ cells exhibited a perivascular distribution pattern. EGFP+ cells from the bone compartment could be clonally expanded ex vivo from single cells and displayed trilineage differentiation potential. Moreover, in the central bone marrow CD73-EGFP+ specifically labeled sinusoidal endothelial cells, thought to be a critical component of the hematopoietic stem cell niche. Purification and molecular characterization of this CD73-EGFP+ population revealed an endothelial subtype that also displays a mesenchymal signature, highlighting endothelial cell heterogeneity in the marrow. Thus, the CD73-EGFP mouse is a powerful tool for studying MSCs and sinusoidal endothelium.


Assuntos
5'-Nucleotidase/metabolismo , Células da Medula Óssea/metabolismo , Células Endoteliais/metabolismo , Células-Tronco Multipotentes/metabolismo , Coloração e Rotulagem , Nicho de Células-Tronco , Animais , Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Condrogênese , Células Endoteliais/citologia , Feminino , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Multipotentes/citologia , Especificidade de Órgãos , Células Estromais/citologia , Células Estromais/metabolismo
6.
Nephrol Dial Transplant ; 32(12): 1977-1983, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28340252

RESUMO

Urinary tract infections (UTIs) are among the most common bacterial infections worldwide. Humans evolved various immune-dependent and independent defense mechanisms, while pathogens evolved multiple virulence factors to fight back. This article summarizes recent findings regarding the arms race between hosts and pathogens in UTIs. It was recently reported that macrophage subsets regulate neutrophil-mediated defense in primary UTIs but seem to subvert adaptive immunity upon re-infection. Moreover, some bacterial strains can survive inside macrophages, leading to recurrent infections. Inflammasome activation results in infected host cell death and pathogen release, facilitating the removal of intracellular bacteria. As a counteraction, some bacteria evolved mechanisms to disrupt inflammasome activation. Mucosal-associated invariant T cells are further effectors that can lyse infected epithelial cells and release intracellular bacteria. Once released, the bacteria are phagocytosed by neutrophils. However, some bacteria can inhibit neutrophil migration and deprive neutrophils of nutrients. Furthermore, the complement system, considered generally bactericidal, is exploited by the bacteria for cellular invasion. Another weapon against UTI is antimicrobial peptides, e.g. ribonuclease 7, but its production is inhibited by certain bacterial strains. Thus the arms race in UTI is ongoing, and knowing the enemy's methods can help in developing new drugs to win the race.


Assuntos
Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/imunologia , Infecções por Escherichia coli/imunologia , Sistema Imunitário/efeitos dos fármacos , Infecções Urinárias/imunologia , Escherichia coli Uropatogênica/imunologia , Animais , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Humanos , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/efeitos dos fármacos , Escherichia coli Uropatogênica/patogenicidade
7.
Eur J Immunol ; 47(4): 677-684, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28198542

RESUMO

Well-defined gradients of the lipid mediator sphingosine-1-phosphate (S1P) direct chemotactic egress of mature thymocytes from the thymus into the circulation. Although it is known that these gradients result from low S1P levels in the thymic parenchyma and high S1P concentrations at the exit sites and in the plasma, the biochemical mechanisms that regulate these differential S1P levels remain unclear. Several studies demonstrated that ceramide synthase 2 (Cers2) regulates the levels of the S1P precursor sphingosine. We, therefore, investigated whether Cers2 is involved in the regulation of S1P gradients and S1P-dependent egress into the circulation. By analyzing Cers2-deficient mice, we demonstrate that Cers2 limits the levels of S1P in thymus and blood to maintain functional S1P gradients that mediate thymocyte emigration into the circulation. This function is specific for Cers2, as we also show that Cers4 is not involved in the regulation of thymic egress. Our study identified Cers2 as an important regulator of S1P-dependent thymic egress, and thus contributes to the understanding of how S1P gradients are maintained in vivo.


Assuntos
Quimiotaxia , Esfingosina N-Aciltransferase/metabolismo , Linfócitos T/fisiologia , Timócitos/fisiologia , Timo/imunologia , Animais , Diferenciação Celular , Movimento Celular , Células Cultivadas , Lisofosfolipídeos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Esfingosina N-Aciltransferase/genética
8.
Kidney Int ; 89(1): 14-6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26759039

RESUMO

Acute kidney graft allorejection affects primarily the renal cortex. The present study by Chessa et al. offers an explanation for this phenomenon. The authors employ microarray-based gene expression analysis to provide evidence that the hyperosmolarity of the renal medulla induces a transcriptional fingerprint associated with anti-inflammatory functionality in medullary dendritic cells, which may attenuate local alloreactivity. This novel immunoregulatory mechanism hints at a new opportunity to prevent allorejection.


Assuntos
Aloenxertos , Rejeição de Enxerto , Células Dendríticas/metabolismo , Humanos , Rim , Transplante de Rim , Cloreto de Sódio na Dieta/metabolismo
9.
J Am Soc Nephrol ; 26(4): 908-25, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25145931

RESUMO

Sphingosine 1-phosphate (S1P), the natural sphingolipid ligand for a family of five G protein- coupled receptors (S1P1-S1P5Rs), regulates cell survival and lymphocyte circulation. We have shown that the pan-S1PR agonist, FTY720, attenuates kidney ischemia-reperfusion injury by directly activating S1P1 on proximal tubule (PT) cells, independent of the canonical lymphopenic effects of S1P1 activation on B and T cells. FTY720 also reduces cisplatin-induced AKI. Therefore, in this study, we used conditional PT-S1P1-null (PepckCreS1pr1(fl/fl)) and control (PepckCreS1pr1(w/wt)) mice to determine whether the protective effect of FTY720 in AKI is mediated by PT-S1P1. Cisplatin induced more renal injury in PT-S1P1-null mice than in controls. Although FTY720 produced lymphopenia in both control and PT-S1P1-null mice, it reduced injury only in control mice. Furthermore, the increase in proinflammatory cytokine (CXCL1, MCP-1, TNF-α, and IL-6) expression and infiltration of neutrophils and macrophages induced by cisplatin treatment was attenuated by FTY720 in control mice but not in PT-S1P1-null mice. Similarly, S1P1 deletion rendered cultured PT cells more susceptible to cisplatin-induced injury, whereas S1P1 overexpression protected PT cells from injury and preserved mitochondrial function. We conclude that S1P1 may have an important role in stabilizing mitochondrial function and that FTY720 administration represents a novel strategy in the prevention of cisplatin-induced AKI.


Assuntos
Injúria Renal Aguda/prevenção & controle , Túbulos Renais Proximais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Propilenoglicóis/uso terapêutico , Receptores de Lisoesfingolipídeo/agonistas , Esfingosina/análogos & derivados , Injúria Renal Aguda/induzido quimicamente , Animais , Apoptose/efeitos dos fármacos , Respiração Celular , Cisplatino , Avaliação Pré-Clínica de Medicamentos , Células Epiteliais/efeitos dos fármacos , Cloridrato de Fingolimode , Masculino , Camundongos Endogâmicos C57BL , Dinâmica Mitocondrial , Propilenoglicóis/farmacologia , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/farmacologia , Esfingosina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...