Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 13(18): 9355-9371, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-35972507

RESUMO

It is important to understand variability in consumer chewing behavior for designing food products that deliver desired functionalities for target consumer segments. In this study, we selected 29 participants, representing the large range of chewing variation we had observed in 142 healthy young adults, and investigated the influence of chewing behavior on gastrointestinal digestion and colonic fermentation, using in vitro models and brown rice as a model food. Chewing behavior measured by video observations and chewing outcome differed widely between participants, resulting in large differences in the digestibility of carbohydrates. Inter-individual differences in chewing behavior and chewing outcome also significantly affected in vitro patterns of microbial composition and the production of organic acid metabolites, resulting from colonic fermentation, which is increasingly recognized to be important for human health. These digestion/fermentation outcomes were largely related with the chewing time per mouthful, proportion of bolus particles bigger than 2 mm and amount of saliva added to the bolus during chewing. No significant relationships were found with other chewing trajectory and oral physiological measures. These results suggest that modification of chewing may be an effective strategy to control blood glucose levels and to shape gut microbiota and their metabolites, without altering diets, and that further in vivo studies are warranted to confirm these in vitro findings.


Assuntos
Digestão , Mastigação , Glicemia , Fermentação , Alimentos , Humanos , Mastigação/fisiologia , Adulto Jovem
2.
Microorganisms ; 9(10)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34683410

RESUMO

We examined the prebiotic potential of 32 food ingredients on the developing infant microbiome using an in vitro gastroileal digestion and colonic fermentation model. There were significant changes in the concentrations of short-chain fatty-acid metabolites, confirming the potential of the tested ingredients to stimulate bacterial metabolism. The 16S rRNA gene sequencing for a subset of the ingredients revealed significant increases in the relative abundances of the lactate- and acetate-producing Bifidobacteriaceae, Enterococcaceae, and Lactobacillaceae, and lactate- and acetate-utilizing Prevotellaceae, Lachnospiraceae, and Veillonellaceae. Selective changes in specific bacterial groups were observed. Infant whole-milk powder and an oat flour enhanced Bifidobacteriaceae and lactic acid bacteria. A New Zealand-origin spinach powder enhanced Prevotellaceae and Lachnospiraceae, while fruit and vegetable powders increased a mixed consortium of beneficial gut microbiota. All food ingredients demonstrated a consistent decrease in Clostridium perfringens, with this organism being increased in the carbohydrate-free water control. While further studies are required, this study demonstrates that the selected food ingredients can modulate the infant gut microbiome composition and metabolism in vitro. This approach provides an opportunity to design nutrient-rich complementary foods that fulfil infants' growth needs and support the maturation of the infant gut microbiome.

3.
Sci Rep ; 11(1): 9292, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33927231

RESUMO

Eight plant-based foods: oat flour and pureed apple, blackcurrant, carrot, gold- and green-fleshed kiwifruit, pumpkin, sweetcorn, were pre-digested and fermented with pooled inocula of weaning infants' faecal bacteria in an in vitro hindgut model. Inulin and water were included as controls. The pre-digested foods were analysed for digestion-resistant fibre-derived sugar composition and standardised to the same total fibre concentration prior to fermentation. The food-microbiome interactions were then characterised by measuring microbial acid and gas metabolites, microbial glycosidase activity and determining microbiome structure. At the physiologically relevant time of 10 h of fermentation, the xyloglucan-rich apple and blackcurrant favoured a propiogenic metabolic and microbiome profile with no measurable gas production. Glucose-rich, xyloglucan-poor pumpkin caused the greatest increases in lactate and acetate (indicative of high fermentability) commensurate with increased bifidobacteria. Glucose-rich, xyloglucan-poor oats and sweetcorn, and arabinogalactan-rich carrot also increased lactate and acetate, and were more stimulatory of clostridial families, which are indicative of increased microbial diversity and gut and immune health. Inulin favoured a probiotic-driven consortium, while water supported a proteolytic microbiome. This study shows that the fibre-derived sugar composition of complementary foods may shape infant gut microbiome structure and metabolic activity, at least in vitro.


Assuntos
Bactérias/metabolismo , Fibras na Dieta/análise , Fermentação , Microbioma Gastrointestinal , Açúcares/análise , Avena/química , Bactérias/classificação , Bactérias/enzimologia , Ácidos Carboxílicos/metabolismo , Fibras na Dieta/metabolismo , Fezes/microbiologia , Frutas/química , Glicosídeo Hidrolases/metabolismo , Humanos , Lactente , Açúcares/metabolismo , Verduras/química , Desmame
4.
Microorganisms ; 8(10)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066564

RESUMO

Whole kiwifruit ('Hayward' and 'Zesy002') were examined for their bioaminergic potential after being subjected to in vitro gastrointestinal digestion and colonic fermentation. Controls included the prebiotic inulin and water, a carbohydrate-free vehicle. The dopamine precursor l-dihydroxyphenylalanine (L-DOPA) and the serotonin precursor 5-hydroxytryptophan were increased in the kiwifruit gastrointestinal digesta ('Hayward' > 'Zesy002') in comparison to the water digesta. Fermentation of the digesta with human fecal bacteria for 18 h modulated the concentrations of bioamine metabolites. The most notable were the significant increases in L-DOPA ('Zesy002' > 'Hayward') and γ-aminobutyric acid (GABA) ('Hayward' > 'Zesy002'). Kiwifruit increased Bifidobacterium spp. and Veillonellaceae (correlating with L-DOPA increase), and Lachnospira spp. (correlating with GABA). The digesta and fermenta were incubated with Caco-2 cells for 3 h followed by gene expression analysis. Effects were seen on genes related to serotonin synthesis/re-uptake/conversion to melatonin, gut tight junction, inflammation and circadian rhythm with different digesta and fermenta from the four treatments. These indicate potential effects of the substrates and the microbially generated organic acid and bioamine metabolites on intestinal functions that have physiological relevance. Further studies are required to confirm the potential bioaminergic effects of gut microbiota-kiwifruit interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...