RESUMO
BACKGROUND: P2X7 receptors (P2X7R) are ligand-gated ion channels activated by adenosine 5'-triphosphate (ATP), which are involved in processes that are dysfunctional in stress response and depression, such as neurotransmitter release, and neuroimmune response. Genetic and pharmacological inhibition of the P2X7R induce antidepressant-like effects in animals exposed to stress. However, the effect of P2X7R antagonism in an animal model of depression based on selective breeding has not previously been studied, and the mechanism underling the antidepressant-like effect induced by the P2X7R blockade remains unknown. AIMS: The present study aimed to: (1) determine whether P2X7R blockade induces antidepressant-like effects in the Flinders Sensitive Line (FSL) rats and, (2) investigate whether brain-derived neurotrophic factor (BDNF) signalling in the frontal cortex and hippocampus is involved in this effect. METHODS: FSL and the control Flinders Resistant Line (FRL) rats were treated with vehicle or the P2X7R antagonist A-804598 (3, 10 or 30 mg/Kg/day) for 1 or 7 days before being exposed to the forced swim test (FST). After the behavioural test, animals were decapitated, their brains were removed and the frontal cortex, ventral and dorsal hippocampus were dissected for BDNF signalling analysis. RESULTS: We found that repeated treatment with A-804598 (30 mg/Kg) reduced the immobility time in the FST and activated the BDNF signalling in the ventral hippocampus of FSL rats. CONCLUSIONS: P2X7R blockade induces an antidepressant-like effect associated with increased levels of BDNF-AKT-p70 S6 kinase in the ventral hippocampus, which may be mediated by tropomyosin-related kinase B (TRKB) receptor activation supporting the notion of P2X7R antagonism as a potential new antidepressant strategy.
Assuntos
Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Guanidinas/farmacologia , Antagonistas do Receptor Purinérgico P2X/administração & dosagem , Quinolinas/farmacologia , Animais , Antidepressivos/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/fisiopatologia , Modelos Animais de Doenças , Guanidinas/administração & dosagem , Masculino , Dose Máxima Tolerável , Antagonistas do Receptor Purinérgico P2X/farmacologia , Quinolinas/administração & dosagem , Ratos , Receptor trkB/metabolismo , Receptores Purinérgicos P2X7/efeitos dos fármacos , Receptores Purinérgicos P2X7/metabolismo , Estresse Psicológico/tratamento farmacológico , Natação , Fatores de TempoRESUMO
BACKGROUND: Cannabidiol is a non-psychotomimetic compound with antidepressant-like effects. However, the mechanisms and brain regions involved in cannabidiol effects are not yet completely understood. Brain-derived neurotrophic factor/tropomyosin-receptor kinase B/mammalian target of rapamycin (BDNF-TrkB-mTOR) signaling, especially in limbic structures, seems to play a central role in mediating the effects of antidepressant drugs. AIM: Since it is not yet known if BDNF-TrkB-mTOR signaling in the hippocampus is critical to the antidepressant-like effects of cannabidiol, we investigated the effects produced by cannabidiol (10/30/60 nmol/0.2 µL) micro-injection into the hippocampus of mice submitted to the forced swim test and to the open field test. METHODS: Independent groups received intra-hippocampal injections of rapamycin (mTOR inhibitor, 0.2 nmol/0.2 µL) or K252 (Trk antagonist, 0.01 nmol/0.2 µL), before the systemic (10 mg/kg) or hippocampal (10 nmol/0.2µL) injection of cannabidiol, and were submitted to the same tests. BDNF levels were analyzed in the hippocampus of animals treated with cannabidiol (10 mg/kg). RESULTS: Systemic cannabidiol administration induced antidepressant-like effects and increased BDNF levels in the dorsal hippocampus. Rapamycin, but not K252a, injection into the dorsal hippocampus prevented the antidepressant-like effect induced by systemic cannabidiol treatment (10 mg/kg). Differently, hippocampal administration of cannabidiol (10 nmol/0.2 µL) reduced immobility time, an effect that was blocked by both rapamycin and K252a local microinjection. CONCLUSION: Altogether, our data suggest that the hippocampal BDNF-TrkB-mTOR pathway is vital for cannabidiol-induced antidepressant-like effect when the drug is locally administered. However, other brain regions may also be involved in cannabidiol-induced antidepressant effect upon systemic administration.