Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dis Model Mech ; 11(9)2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30045841

RESUMO

Enthesitis is a key feature of several different rheumatic diseases. Its pathophysiology is only partially known due to the lack of access to human tissue and the shortage of reliable animal models for enthesitis. Here, we aimed to develop a model that mimics the effector phase of enthesitis and reliably leads to inflammation and new bone formation. Enthesitis was induced by local injection of monosodium urate (MSU) crystals into the metatarsal entheses of wild-type (WT) or oxidative-burst-deficient (Ncf1**) mice. Quantitative variables of inflammation (edema, swelling) and vascularization (tissue perfusion) were assessed by magnetic resonance imaging (MRI), bone-forming activity by [18F]-fluoride positron emission tomography (PET), and destruction of cortical bone and new bone formation by computed tomography (CT). Non-invasive imaging was validated by histochemical and histomorphometric analysis. While injection of MSU crystals into WT mice triggered transient mild enthesitis with no new bone formation, Ncf1** mice developed chronic enthesitis accompanied by massive enthesiophytes. In MRI, inflammation and blood flow in the entheses were chronically increased, while PET/CT showed osteoproliferation with enthesiophyte formation. Histochemical analyses showed chronic inflammation, increased vascularization, osteoclast differentiation and bone deposition in the affected entheseal sites. Herein we describe a fast and reliable effector model of chronic enthesitis, which is characterized by a combination of inflammation, vascularization and new bone formation. This model will help to disentangle the molecular pathways involved in the effector phase of enthesitis.


Assuntos
Imagem Multimodal , Osteogênese , Doenças Reumáticas/diagnóstico por imagem , Animais , Doença Crônica , Cristalização , Modelos Animais de Doenças , Inflamação/diagnóstico por imagem , Inflamação/patologia , Camundongos Endogâmicos BALB C , Neovascularização Fisiológica , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Fluxo Sanguíneo Regional , Doenças Reumáticas/patologia , Tomografia Computadorizada por Raios X , Ácido Úrico
2.
Bone ; 111: 71-81, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29545125

RESUMO

Multiple osteochondromas (MO) syndrome is a dominant autosomal bone disorder characterized by the formation of cartilage-capped bony outgrowths that develop at the juxtaposition of the growth plate of endochondral bones. MO has been linked to mutations in either EXT1 or EXT2, two glycosyltransferases required for the synthesis of heparan sulfate (HS). The establishment of mouse mutants demonstrated that a clonal, homozygous loss of Ext1 in a wild type background leads to the development of osteochondromas. Here we investigate mechanisms that might contribute to the variation in the severity of the disease observed in human patients. Our results show that residual amounts of HS are sufficient to prevent the development of osteochondromas strongly supporting that loss of heterozygosity is required for osteochondroma formation. Furthermore, we demonstrate that different signaling pathways affect size and frequency of the osteochondromas thereby modulating the severity of the disease. Reduced Fgfr3 signaling, which regulates proliferation and differentiation of chondrocytes, increases osteochondroma number, while activated Fgfr3 signaling reduces osteochondroma size. Both, activation and reduction of Wnt/ß-catenin signaling decrease osteochondroma size and frequency by interfering with the chondrogenic fate of the mutant cells. Reduced Ihh signaling does not change the development of the osteochondromas, while elevated Ihh signaling increases the cellularity and inhibits chondrocyte differentiation in a subset of osteochondromas and might thus predispose osteochondromas to the transformation into chondrosarcomas.


Assuntos
Exostose Múltipla Hereditária/patologia , Proteínas Hedgehog/fisiologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/fisiologia , beta Catenina/fisiologia , Animais , Diferenciação Celular , Condrócitos/patologia , Modelos Animais de Doenças , Exostose Múltipla Hereditária/genética , Exostose Múltipla Hereditária/metabolismo , Lâmina de Crescimento/patologia , Proteínas Hedgehog/genética , Heparitina Sulfato/metabolismo , Humanos , Perda de Heterozigosidade , Camundongos , N-Acetilglucosaminiltransferases/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia , beta Catenina/genética
3.
Matrix Biol ; 35: 239-47, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24726293

RESUMO

Most elements of the vertebrate skeleton are formed by endochondral ossification. This process is initiated with mesenchymal cells that condense and differentiate into chondrocytes. These undergo several steps of differentiation from proliferating into hypertrophic chondrocytes, which are subsequently replaced by bone. Chondrocyte proliferation and differentiation are tightly controlled by a complex network of signaling molecules. During recent years, it has become increasingly clear that heparan sulfate (HS) carrying proteoglycans play a critical role in controlling the distribution and activity of these secreted factors. In this review we summarize the current understanding of the role of HS in regulating bone formation. In human, mutations in the HS synthetizing enzymes Ext1 and Ext2 induce the Multiple Osteochondroma syndrome, a skeletal disorder characterized by short stature and the formation of benign cartilage-capped tumors. We review the current insight into the origin of the disease and discuss its possible molecular basis. In addition, we summarize the existing insight into the role of HS as a regulator of signal propagation and signaling strength in the developing skeleton.

4.
Matrix Biol ; 34: 55-63, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24370655

RESUMO

Most elements of the vertebrate skeleton are formed by endochondral ossification. This process is initiated with mesenchymal cells that condense and differentiate into chondrocytes. These undergo several steps of differentiation from proliferating into hypertrophic chondrocytes, which are subsequently replaced by bone. Chondrocyte proliferation and differentiation are tightly controlled by a complex network of signaling molecules. During recent years, it has become increasingly clear that heparan sulfate (HS) carrying proteoglycans play a critical role in controlling the distribution and activity of these secreted factors. In this review we summarize the current understanding of the role of HS in regulating bone formation. In human, mutations in the HS synthetizing enzymes Ext1 and Ext2 induce the Multiple Osteochondroma syndrome, a skeletal disorder characterized by short stature and the formation of benign cartilage-capped tumors. We review the current insight into the origin of the disease and discuss its possible molecular basis. In addition, we summarize the existing insight into the role of HS as a regulator of signal propagation and signaling strength in the developing skeleton.


Assuntos
Diferenciação Celular/genética , Heparitina Sulfato/metabolismo , Osteocondroma/genética , Osteogênese , Proliferação de Células/genética , Condrócitos/metabolismo , Condrogênese/genética , Heparitina Sulfato/genética , Humanos , N-Acetilglucosaminiltransferases/genética , Osteocondroma/metabolismo , Transdução de Sinais/genética
5.
J Biol Chem ; 286(26): 23608-19, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21572042

RESUMO

The fly morphogen Hedgehog (Hh) and its mammalian orthologs, Sonic, Indian, and Desert hedgehog, are secreted signaling molecules that mediate tissue patterning during embryogenesis and function in tissue homeostasis and regeneration in the adult. The function of all Hh family members is regulated at the levels of morphogen multimerization on the surface of producing cells, multimer release, multimer diffusion to target cells, and signal reception. These mechanisms are all known to depend on interactions of positively charged Hh amino acids (the Cardin-Weintraub (CW) motif) with negatively charged heparan sulfate (HS) glycosaminoglycan chains. However, a precise mechanistic understanding of these interactions is still lacking. In this work, we characterized ionic HS interactions of multimeric Sonic hedgehog (called ShhNp) as well as mutant forms lacking one or more CW residues. We found that deletion of all five CW residues as well as site-directed mutagenesis of CW residues Lys(33), Arg(35), and Lys(39) (mouse nomenclature) abolished HS binding. In contrast, CW residues Arg(34) and Lys(38) did not contribute to HS binding. Analysis and validation of Shh crystal lattice contacts provided an explanation for this finding. We demonstrate that CW residues Arg(34) and Lys(38) make contact with an acidic groove on the adjacent molecule in the multimer, suggesting a new function of these residues in ShhNp multimerization rather than HS binding. Therefore, the recombinant monomeric morphogen (called ShhN) differs in CW-dependent HS binding and biological activity from physiologically relevant ShhNp multimers, providing new explanations for functional differences observed between ShhN and ShhNp.


Assuntos
Proteínas Hedgehog/química , Proteínas Hedgehog/metabolismo , Multimerização Proteica/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular , Cristalografia por Raios X , Proteínas Hedgehog/genética , Humanos , Camundongos , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...