Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Crystallogr ; 55(Pt 6): 1424-1431, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36570654

RESUMO

A modulation of intensity with zero effort (MIEZE) setup is proposed for high-resolution neutron spectroscopy at momentum transfers up to 3 Å-1, energy transfers up to 20 meV and an energy resolution in the microelectronvolt range using both thermal and cold neutrons. MIEZE has two prominent advantages compared with classical neutron spin echo. The first is the possibility to investigate spin-depolarizing samples or samples in strong magnetic fields without loss of signal amplitude and intensity. This allows for the study of spin fluctuations in ferromagnets, and facilitates the study of samples with strong spin-incoherent scattering. The second advantage is that multi-analyzer setups can be implemented with comparatively little effort. The use of thermal neutrons increases the range of validity of the spin-echo approximation towards shorter spin-echo times. In turn, the thermal MIEZE option for greater ranges (TIGER) closes the gap between classical neutron spin-echo spectroscopy and conventional high-resolution neutron spectroscopy techniques such as triple-axis, time-of-flight and back-scattering. To illustrate the feasibility of TIGER, this paper presents the details of its implementation at the RESEDA beamline at FRM II by means of an additional velocity selector, polarizer and analyzer.

2.
Nanoscale Adv ; 4(4): 1026-1059, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36131777

RESUMO

Magnetic nanoparticles offer unique potential for various technological, biomedical, or environmental applications thanks to the size-, shape- and material-dependent tunability of their magnetic properties. To optimize particles for a specific application, it is crucial to interrelate their performance with their structural and magnetic properties. This review presents the advantages of small-angle X-ray and neutron scattering techniques for achieving a detailed multiscale characterization of magnetic nanoparticles and their ensembles in a mesoscopic size range from 1 to a few hundred nanometers with nanometer resolution. Both X-rays and neutrons allow the ensemble-averaged determination of structural properties, such as particle morphology or particle arrangement in multilayers and 3D assemblies. Additionally, the magnetic scattering contributions enable retrieving the internal magnetization profile of the nanoparticles as well as the inter-particle moment correlations caused by interactions within dense assemblies. Most measurements are used to determine the time-averaged ensemble properties, in addition advanced small-angle scattering techniques exist that allow accessing particle and spin dynamics on various timescales. In this review, we focus on conventional small-angle X-ray and neutron scattering (SAXS and SANS), X-ray and neutron reflectometry, gracing-incidence SAXS and SANS, X-ray resonant magnetic scattering, and neutron spin-echo spectroscopy techniques. For each technique, we provide a general overview, present the latest scientific results, and discuss its strengths as well as sample requirements. Finally, we give our perspectives on how future small-angle scattering experiments, especially in combination with micromagnetic simulations, could help to optimize the performance of magnetic nanoparticles for specific applications.

3.
J Appl Crystallogr ; 55(Pt 3): 586-591, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35719307

RESUMO

The small-angle neutron scattering data of nanostructured magnetic samples contain information regarding their chemical and magnetic properties. Often, the first step to access characteristic magnetic and structural length scales is a model-free investigation. However, due to measurement uncertainties and a restricted q range, a direct Fourier transform usually fails and results in ambiguous distributions. To circumvent these problems, different methods have been introduced to derive regularized, more stable correlation functions, with the indirect Fourier transform being the most prominent approach. Here, the indirect Fourier transform is compared with the singular value decomposition and an iterative algorithm. These approaches are used to determine the correlation function from magnetic small-angle neutron scattering data of a powder sample of iron oxide nanoparticles; it is shown that with all three methods, in principle, the same correlation function can be derived. Each method has certain advantages and disadvantages, and thus the recommendation is to combine these three approaches to obtain robust results.

4.
Sci Adv ; 6(20): eaaz2536, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32440544

RESUMO

The combination of different exotic properties in materials paves the way for the emergence of their new potential applications. An example is the recently found coexistence of the mutually antagonistic ferromagnetism and superconductivity in hydrogenated boron-doped diamond, which promises to be an attractive system with which to explore unconventional physics. Here, we show the emergence of Yu-Shiba-Rusinov (YSR) bands with a spatial extent of tens of nanometers in ferromagnetic superconducting diamond using scanning tunneling spectroscopy. We demonstrate theoretically how a two-dimensional (2D) spin lattice at the surface of a three-dimensional (3D) superconductor gives rise to the YSR bands and how their density-of-states profile correlates with the spin lattice structure. The established strategy to realize new forms of the coexistence of ferromagnetism and superconductivity opens a way to engineer the unusual electronic states and also to design better-performing superconducting devices.

5.
Sci Rep ; 10(1): 5729, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32235906

RESUMO

The increase in superconducting transition temperature (TC) of Sn nanostructures in comparison to bulk, was studied. Changes in the phonon density of states (PDOS) of the weakly coupled superconductor Sn were analyzed and correlated with the increase in TC measured by magnetometry. The PDOS of all nanostructured samples shows a slightly increased number of low-energy phonon modes and a strong decrease in the number of high-energy phonon modes in comparison to the bulk Sn PDOS. The phonon densities of states, which were determined previously using nuclear resonant inelastic X-ray scattering, were used to calculate the superconducting transition temperature using the Allen-Dynes-McMillan (ADMM) formalism. Both the calculated as well as the experimentally determined values of TC show an increase compared to the bulk superconducting transition temperature. The good agreement between these values indicates that phonon softening has a major influence on the superconducting transition temperature of Sn nanostructures. The influence of electron confinement effects appears to be minor in these systems.

6.
Materials (Basel) ; 13(1)2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31906580

RESUMO

Combining various (multi-)ferroic materials into heterostructures is a promising route to enhance their inherent properties, such as the magnetoelectric coupling in BiFeO3 thin films. We have previously reported on the up-to-tenfold increase of the magnetoelectric voltage coefficient α ME in BaTiO3-BiFeO3 multilayers relative to BiFeO3 single layers. Unraveling the origin and mechanism of this enhanced effect is a prerequisite to designing new materials for the application of magnetoelectric devices. By careful variations in the multilayer design we now present an evaluation of the influences of the BaTiO3-BiFeO3 thickness ratio, oxygen pressure during deposition, and double layer thickness. Our findings suggest an interface driven effect at the core of the magnetoelectric coupling effect in our multilayers superimposed on the inherent magnetoelectric coupling of BiFeO3 thin films, which leads to a giant α ME coefficient of 480 V c m -1 Oe-1 for a 16 × (BaTiO3-BiFeO3) superlattice with a 4 . 8 nm double layer periodicity.

7.
Nanoscale ; 10(12): 5574-5580, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29521386

RESUMO

Correlations were established between the hyperfine field distribution around the Fe atoms, the multiferroic properties, and the high magnetoelectric coefficient in BaTiO3-BiFeO3 multilayer stacks with variable BiFeO3 single layer thickness, down to 5 nm. Of key importance in this study was the deposition of 57Fe - enriched BiFeO3, which enhances the sensitivity of conversion electron Mössbauer spectroscopy by orders of magnitude. The magnetoelectric coefficient αME reaches a maximum of 60.2 V cm-1 Oe-1 at 300 K and at a DC bias field of 2 Tesla for a sample of 15 × (10 nm BaTiO3-5 nm BiFeO3) and is one of the highest values reported so far. Interestingly, the highest αME is connected to a high asymmetry of the hyperfine field distribution of the multilayer composite samples. The possible mechanisms responsible for the strong magnetoelectric coupling are discussed.

8.
ACS Nano ; 11(6): 5358-5366, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28511000

RESUMO

Superconductivity and ferromagnetism are two mutually antagonistic states in condensed matter. Research on the interplay between these two competing orderings sheds light not only on the cause of various quantum phenomena in strongly correlated systems but also on the general mechanism of superconductivity. Here we report on the observation of the electronic entanglement between superconducting and ferromagnetic states in hydrogenated boron-doped nanodiamond films, which have a superconducting transition temperature Tc ∼ 3 K and a Curie temperature TCurie > 400 K. In spite of the high TCurie, our nanodiamond films demonstrate a decrease in the temperature dependence of magnetization below 100 K, in correspondence to an increase in the temperature dependence of resistivity. These anomalous magnetic and electrical transport properties reveal the presence of an intriguing precursor phase, in which spin fluctuations intervene as a result of the interplay between the two antagonistic states. Furthermore, the observations of high-temperature ferromagnetism, giant positive magnetoresistance, and anomalous Hall effect bring attention to the potential applications of our superconducting ferromagnetic nanodiamond films in magnetoelectronics, spintronics, and magnetic field sensing.

9.
Materials (Basel) ; 9(7)2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-28773675

RESUMO

To utilize iron oxide nanoparticles in biomedical applications, a sufficient magnetic moment is crucial. Since this magnetic moment is directly proportional to the size of the superparamagnetic nanoparticles, synthesis methods of superparamagnetic iron oxide nanoparticles with tunable size are desirable. However, most existing protocols are plagued by several drawbacks. Presented here is a one-pot synthesis method resulting in monodisperse superparamagnetic iron oxide nanoparticles with a controllable size and magnetic moment using cost-effective reagents. The obtained nanoparticles were thoroughly characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) measurements. Furthermore, the influence of the size on the magnetic moment of the nanoparticles is analyzed by superconducting quantum interference device (SQUID) magnetometry. To emphasize the potential use in biomedical applications, magnetic heating experiments were performed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...