Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 888: 164011, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37172859

RESUMO

The Baltic Sea serves as a model region to study processes leading to oxygen depletion. Reconstructing past low-oxygen occurrences, specifically hypoxia, is crucial to understand current ecological disturbances and developing future mitigation strategies. The history of dissolved oxygen (DO) concentration in some Baltic Sea basins has been investigated in previous studies, but temporally well-constrained, inter-annual and better resolved DO reconstructions are still scarce. Here, we present precisely dated, high-resolution DO record since the mid-19th century reconstructed from Mn/Cashell values of Arctica islandica (Bivalvia) collected in the Mecklenburg Bight. According to the data, this area experienced similar low oxygenation during the second half of the 19th century and the late 20th century, but DO variability increased: A 12-15-yr oscillation prevailed in the 19th century, but a 4-6-year period dominated in the late 20th century. Shortly after the onset of the Industrial Revolution around 1850, Mn/Cashell values increased, indicating a DO decrease, probably caused by strong anthropogenic nutrient input. More recently, phosphate levels and inflows of oxygen-rich North Sea water have been identified as major factors controlling the bottom water oxygenation. For example, the increase in DO in the mid-1990s was linked to the decrease in phosphate content and several Major Baltic Inflows. The strong Ba/Cashell rise between the 1860s and the turn of the century most likely reflects changes in diatom community structure rather than a bloom of mass phytoplankton. This is supported by largely unchanged Mn/Cashell and shell growth. Decadal and multi-decadal cycles of shell growth rate correlated strongly with the Atlantic Multidecadal Variability, likely reflecting changes in atmospheric circulation patterns, precipitation rate and riverine nutrient supply. To further improve the management and protection of ecosystems in the Baltic Sea, a larger number of such high-resolution retrospective studies covering long periods of time and large regions are needed.


Assuntos
Bivalves , Oxigênio , Animais , Ecossistema , Estudos Retrospectivos , Hipóxia
2.
ACS Omega ; 6(28): 18110-18122, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34308044

RESUMO

Different approaches for the determination of the 87Sr/86Sr isotope ratio of high-Rb glass are compared in this work to assess the suitability of minimally invasive approaches for applications on medieval stained glass (from the ancient Abbey of Stavelot in Belgium). It was found that pneumatic nebulization multicollector inductively coupled plasma-mass spectrometry (PN-MC-ICP-MS) after acid digestion and chromatographic isolation of the target analyte out of the sample matrix can still be seen as the preferred method for the high-precision isotopic analysis of Sr in glass with high Rb and rare-earth element (REE) concentrations. Alternatively, the use of laser ablation (LA) for sample introduction is a powerful technique for the direct analysis of solid samples. However, both the high Rb/Sr ratios in the samples of interest and the presence of REEs at sufficiently high concentrations lead to a large bias in LA-MC-ICP-MS, which cannot be corrected for, even by operating the MC-ICP-MS instrument at higher mass resolution and/or using mathematical corrections. It was demonstrated that LA tandem-ICP-MS (LA-ICP-MS/MS) using CH3F/He as the reaction gas to overcome spectral overlap in a mass-shift approach (chemical resolution) provides a viable alternative when (quasi) nondestructive analysis is required. This approach relies on the monitoring of Sr+ (m/z = 86, 87, and 88) ions as the corresponding SrF+ reaction product ions (m/z = 105, 106, and 107), thus avoiding the occurrence of spectral interference. Self-evidently, the isotope ratio precision attainable using sequential quadrupole-based ICP-MS instrumentation (0.3% RSD) was found to be significantly worse than that of high-precision MC-ICP-MS (0.03% RSD) with simultaneous detection, although it was still fit for the purpose of current applications. In addition to Sr isotopic analysis, the REE patterns and their potential influence on the Sr isotopic composition were evaluated by LA-ICP-MS.

4.
PLoS One ; 15(8): e0235421, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32756552

RESUMO

We investigated rock varnish, a thin, manganese- and iron-rich, dark surface crust, on basaltic lava flows and petroglyphs in the Owens and Rose Valleys (California) by portable X-ray fluorescence (pXRF) and femtosecond laser-ablation inductively-coupled-plasma mass spectrometry (fs-LA-ICPMS). The major element composition of the varnish was consistent with a mixture of Mn-Fe oxyhydroxides and clay minerals. As expected, it contained elevated concentrations of elements that are typically enriched in rock varnish, e.g., Mn, Pb, Ba, Ce, and Co, but also showed unusually high enrichments in U, Cu, and Th. The rare earth and yttrium (REY) enrichment pattern revealed a very strong positive cerium (Ce) anomaly and distinct negative europium (Eu) and Y anomalies. The light rare earth elements (REE) were much more strongly enriched than the heavy REY. These enrichment patterns are consistent with a formation mechanism by leaching of Mn and trace elements from aeolian dust, reprecipitation of Mn and Fe as oxyhydroxides, and scavenging of trace elements by these oxyhydroxides. We inferred accumulation rates of Mn and Fe in the varnish from their areal densities measured by pXRF and the known ages of some of the lava flow surfaces. The areal densities of Mn and Fe, as well as their accumulation rates, were comparable to our previous results from the desert of Saudi Arabia. There was a moderate dependence of the Mn areal density on the inclination of the rock surfaces, but no relationship to its cardinal orientation. We attempted to use the degree of varnish regrowth on the rock art surfaces as an estimate of their age. While an absolute dating of the petroglyphs was not possible because of the lack of suitable calibration surfaces and a considerable amount of variability, the measured degree of varnish regrowth on the various petroglyphs was consistent with chronologies based on archeological and other archaeometric techniques. In particular, our results suggest that rock art creation in the study area continued over an extended period of time, possibly starting around the Pleistocene/Holocene transition and extending into the last few centuries.


Assuntos
Argila/química , Hidróxidos/análise , Ferro/análise , Manganês/análise , California , Meio Ambiente , Monitoramento Ambiental , Espectrometria de Massas , Metais Terras Raras/análise , Espectrometria por Raios X , Propriedades de Superfície , Erupções Vulcânicas , Ítrio/análise
5.
Proc Natl Acad Sci U S A ; 117(9): 4675-4681, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32071235

RESUMO

Stable carbon and nitrogen isotope ratios of collagen from bone and dentin have frequently been used for dietary reconstruction, but this method is limited by protein preservation. Isotopes of the trace element zinc (Zn) in bioapatite constitute a promising proxy to infer dietary information from extant and extinct vertebrates. The 66Zn/64Zn ratio (expressed as δ66Zn value) shows an enrichment of the heavy isotope in mammals along each trophic step. However, preservation of diet-related δ66Zn values in fossil teeth has not been assessed yet. Here, we analyzed enamel of fossil teeth from the Late Pleistocene (38.4-13.5 ka) mammalian assemblage of the Tam Hay Marklot (THM) cave in northeastern Laos, to reconstruct the food web and assess the preservation of original δ66Zn values. Distinct enamel δ66Zn values of the fossil taxa (δ66Zncarnivore < δ66Znomnivore < δ66Znherbivore) according to their expected feeding habits were observed, with a trophic carnivore-herbivore spacing of +0.60‰ and omnivores having intermediate values. Zn and trace element concentration profiles similar to those of modern teeth also indicate minimal impact of diagenesis on the enamel. While further work is needed to explore preservation for settings with different taphonomic conditions, the diet-related δ66Zn values in fossil enamel from THM cave suggest an excellent long-term preservation potential, even under tropical conditions that are well known to be adverse for collagen preservation. Zinc isotopes could thus provide a new tool to assess the diet of fossil hominins and associated fauna, as well as trophic relationships in past food webs.


Assuntos
Dieta Paleolítica , Fósseis , Hominidae/fisiologia , Dente/química , Isótopos de Zinco/análise , Animais , Sudeste Asiático , Cavernas , Colágeno/química
6.
PLoS One ; 13(3): e0193796, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29590155

RESUMO

The 4th century BC marks the main entrance of Celtic populations in northern Italy. Their arrival has been suggested based on the presence of Celtic customs in Etruscan mortuary contexts, yet up to now few bioarchaeological data have been examined to support or reject the arrival of these newcomers. Here we use strontium isotopes, non-metric dental traits and funerary patterns to unravel the biocultural structure of the necropolis of Monterenzio Vecchio (Bologna, Italy). Subsamples of our total sample of 38 individuals were analyzed based on different criteria characterizing the following analyses: 1) strontium isotope analysis to investigate migratory patterns and provenance; 2) non-metric dental traits to establish biological relationships between Monterenzio Vecchio, 13 Italian Iron age necropolises and three continental and non-continental Celtic necropolises; 3) grave goods which were statistically explored to detect possible patterns of cultural variability. The strontium isotopes results indicate the presence of local and non-local individuals, with some revealing patterns of mobility. The dental morphology reveals an affinity between Monterenzio Vecchio and Iron Age Italian samples. However, when the Monterenzio Vecchio sample is separated by isotopic results into locals and non-locals, the latter share affinity with the sample of non-continental Celts from Yorkshire (UK). Moreover, systematic analyses demonstrate that ethnic background does not retain measurable impact on the distribution of funerary elements. Our results confirm the migration of Celtic populations in Monterenzio as archaeologically hypothesized on the basis of the grave goods, followed by a high degree of cultural admixture between exogenous and endogenous traits. This contribution shows that combining different methods offers a more comprehensive perspective for the exploration of biocultural processes in past and present populations.


Assuntos
Cultura , Rituais Fúnebres/história , Dinâmica Populacional/história , Dente/anatomia & histologia , Dente/química , Análise por Conglomerados , Feminino , História Antiga , Humanos , Itália , Masculino , Isótopos de Estrôncio/análise , Reino Unido/etnologia
7.
Rapid Commun Mass Spectrom ; 31(13): 1079-1087, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28488735

RESUMO

RATIONALE: High spatial resolution Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS) determination of trace element concentrations is of great interest for geological and environmental studies. Data reduction is a very important aspect of LA-ICP-MS, and several commercial programs for handling LA-ICPMS trace element data are available. Each of these software packages has its specific advantages and disadvantages. METHODS: Here we present TERMITE, an R script for the reduction of LA-ICPMS data, which can reduce both spot and line scan measurements. Several parameters can be adjusted by the user, who does not necessarily need prior knowledge in R. Currently, ten reference materials with different matrices for calibration of LA-ICPMS data are implemented, and additional reference materials can be added by the user. TERMITE also provides an optional outlier test, and the results are provided graphically (as a pdf file) as well as numerically (as a csv file). RESULTS: As an example, we apply TERMITE to a speleothem sample and compare the results with those obtained using the commercial software GLITTER. The two programs give similar results. TERMITE is particularly useful for samples that are homogeneous with respect to their major element composition (in particular for the element used as an internal standard) and when many measurements are performed using the same analytical parameters. In this case, data evaluation using TERMITE is much faster than with all other available software, and the concentrations of more than 100 single spot measurements can be calculated in less than a minute. CONCLUSIONS: TERMITE is an open-source software for the reduction of LA-ICPMS data, which is particularly useful for the fast, reproducible evaluation of large datasets of samples that are homogeneous with respect to their major element composition. Copyright © 2017 John Wiley & Sons, Ltd.

8.
Sci Rep ; 5: 36975, 2016 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-27833133

RESUMO

The extent to which climate variability in Central Asia is causally linked to large-scale changes in the Asian monsoon on varying timescales remains a longstanding question. Here we present precisely dated high-resolution speleothem oxygen-carbon isotope and trace element records of Central Asia's hydroclimate variability from Tonnel'naya cave, Uzbekistan, and Kesang cave, western China. On orbital timescales, the supra-regional climate variance, inferred from our oxygen isotope records, exhibits a precessional rhythm, punctuated by millennial-scale abrupt climate events, suggesting a close coupling with the Asian monsoon. However, the local hydroclimatic variability at both cave sites, inferred from carbon isotope and trace element records, shows climate variations that are distinctly different from their supra-regional modes. Particularly, hydroclimatic changes in both Tonnel'naya and Kesang areas during the Holocene lag behind the supra-regional climate variability by several thousand years. These observations may reconcile the apparent out-of-phase hydroclimatic variability, inferred from the Holocene lake proxy records, between Westerly Central Asia and Monsoon Asia.

9.
IUBMB Life ; 65(5): 382-96, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23509013

RESUMO

The sponge siliceous spicules are formed enzymatically via silicatein, in contrast to other siliceous biominerals. Originally, silicatein had been described as a major structural protein of the spicules that has the property to allow a specific deposition of silica onto their surface. More recently, it had been unequivocally demonstrated that silicatein displays a genuine enzyme activity, initiating and maintaining silica biopolycondensation at low precursor concentrations (<2 mM). Even more, as silicatein becomes embedded into the biosilica polymer, formed by the enzyme, it retains its functionality to enable a controlled biosilica deposition. The protection of silicatein through the biosilica mantel is so strong that it conserves the functionality of the enzyme for thousands of years. The implication of this finding, the preservation of the enzyme function over such long time periods, is that the intrinsic property of silicatein to display its enzymatic activity remains in the biosilica deposits. This self-healing property of sponge biosilica can be utilized to engineer novel hybrid materials, with silicatein as a functional template, which are more resistant toward physical stress and fracture. Those hybrid materials can even be used for the fabrication of silica dielectrics coupled to optical nanowires.


Assuntos
Minerais/metabolismo , Poríferos/fisiologia , Sequência de Aminoácidos , Animais , Catepsinas/genética , Catepsinas/metabolismo , Dados de Sequência Molecular , Poríferos/enzimologia , Poríferos/crescimento & desenvolvimento , Alinhamento de Sequência , Dióxido de Silício/metabolismo
10.
Nat Nanotechnol ; 7(8): 530-5, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22751222

RESUMO

Marine biofouling--the colonization of small marine microorganisms on surfaces that are directly exposed to seawater, such as ships' hulls--is an expensive problem that is currently without an environmentally compatible solution. Biofouling leads to increased hydrodynamic drag, which, in turn, causes increased fuel consumption and greenhouse gas emissions. Tributyltin-free antifouling coatings and paints based on metal complexes or biocides have been shown to efficiently prevent marine biofouling. However, these materials can damage the environment through metal leaching (for example, of copper and zinc) and bacteria resistance. Here, we show that vanadium pentoxide nanowires act like naturally occurring vanadium haloperoxidases to prevent marine biofouling. In the presence of bromide ions and hydrogen peroxide, the nanowires catalyse the oxidation of bromide ions to hypobromous acid (HOBr). Singlet molecular oxygen ((1)O(2)) is formed and this exerts strong antibacterial activity, which prevents marine biofouling without being toxic to marine biota. Vanadium pentoxide nanowires have the potential to be an alternative approach to conventional anti-biofouling agents.


Assuntos
Incrustação Biológica , Nanopartículas , Nanofios , Compostos de Vanádio/química , Antibacterianos/química , Biofilmes/crescimento & desenvolvimento , Brometos/química , Humanos , Peróxido de Hidrogênio/química , Nanopartículas/química , Nanopartículas/microbiologia , Nanofios/química , Nanofios/microbiologia , Peroxidases/química , Água do Mar , Navios , Oxigênio Singlete/química
11.
Nature ; 476(7361): 434-7, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21832996

RESUMO

Recycling of oceanic crust through subduction, mantle upwelling, and remelting in mantle plumes is a widely accepted mechanism to explain ocean island volcanism. The timescale of this recycling is important to our understanding of mantle circulation rates. Correlations of uranogenic lead isotopes in lavas from ocean islands such as Hawaii or Iceland, when interpreted as model isochrons, have yielded source differentiation ages between 1 and 2.5 billion years (Gyr). However, if such correlations are produced by mixing of unrelated mantle components they will have no direct age significance. Re-Os decay model ages take into account the mixing of sources with different histories, but they depend on the assumed initial Re/Os ratio of the subducted crust, which is poorly constrained because of the high mobility of rhenium during subduction. Here we report the first data on (87)Sr/(86)Sr ratios for 138 melt inclusions in olivine phenocrysts from lavas of Mauna Loa shield volcano, Hawaii, indicating enormous mantle source heterogeneity. We show that highly radiogenic strontium in severely rubidium-depleted melt inclusions matches the isotopic composition of 200-650-Myr-old sea water. We infer that such sea water must have contaminated the Mauna Loa source rock, before subduction, imparting a unique 'time stamp' on this source. Small amounts of seawater-derived strontium in plume sources may be common but can be identified clearly only in ultra-depleted melts originating from generally highly (incompatible-element) depleted source components. The presence of 200-650-Myr-old oceanic crust in the source of Hawaiian lavas implies a timescale of general mantle circulation with an average rate of about 2 (±1) cm yr(-1), much faster than previously thought.

12.
PLoS One ; 6(6): e20523, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21655099

RESUMO

The enzymatic-silicatein mediated formation of the skeletal elements, the spicules of siliceous sponges starts intracellularly and is completed extracellularly. With Suberites domuncula we show that the axial growth of the spicules proceeds in three phases: (I) formation of an axial canal; (II) evagination of a cell process into the axial canal, and (III) assembly of the axial filament composed of silicatein. During these phases the core part of the spicule is synthesized. Silicatein and its substrate silicate are stored in silicasomes, found both inside and outside of the cellular extension within the axial canal, as well as all around the spicule. The membranes of the silicasomes are interspersed by pores of ≈ 2 nm that are likely associated with aquaporin channels which are implicated in the hardening of the initial bio-silica products formed by silicatein. We can summarize the sequence of events that govern spicule formation as follows: differential GENETIC READOUT (of silicatein) → FRACTAL ASSOCIATION of the silicateins → EVAGINATION of cells by hydro-mechanical forces into the axial canal → and finally PROCESSIVE BIO-SILICA POLYCONDENSATION around the axial canal. We termed this process, occurring sequentially or in parallel, BIO-INORGANIC SELF-ORGANIZATION.


Assuntos
Catepsinas/metabolismo , Silicatos/metabolismo , Dióxido de Silício/metabolismo , Suberites/metabolismo , Animais , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/ultraestrutura , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/ultraestrutura , Imuno-Histoquímica , Microscopia Eletrônica de Transmissão , Modelos Biológicos , Espectrometria por Raios X , Suberites/citologia , Suberites/ultraestrutura
13.
Biochim Biophys Acta ; 1810(7): 713-26, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21565255

RESUMO

BACKGROUND: Spicules, the siliceous skeletal elements of the siliceous sponges, are synthesized enzymatically via silicatein. The product formed, bio-silica, constitutes their inorganic matrix. It remained unexplored which reactions are involved in molding of the amorphous bio-silica and formation of a solid and rigid biomaterial. METHODS: Cell and molecular biological techniques have been applied to analyze processes resulting in the hardening of the enzymatically synthesized bio-silica. The demosponge Suberites domuncula has been used for the studies. RESULTS: Cell aggregates (primmorphs) from the sponge S. domuncula, grown in the presence of Mn-sulfate, form spicules that comprise, instead of a smooth, a rough and porous surface which is decorated with irregular bio-silica deposits. During this process, the expression of the aquaporin-8 gene becomes down-regulated. Further in vitro studies showed that aquaporin is required for dehydration, and hardening of bio-silica following its enzymatic formation. The data show that in cell aggregates grown in the presence of Mn-sulfate, aquaporin-8 is down-regulated. We conclude that in cell aggregates grown in the presence of Mn-sulfate, the removal of reaction water, produced during the bio-silica polycondensation reaction, is inhibited. GENERAL SIGNIFICANCE: This study highlights that besides the silicatein-driven polycondensation reaction, the spicule formation also requires a phase of syneresis that results in a hardening of the material.


Assuntos
Aquaporinas/metabolismo , Dióxido de Silício/metabolismo , Suberites/metabolismo , Água/metabolismo , Absorção/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Aquaporinas/classificação , Aquaporinas/genética , Catepsinas/genética , Catepsinas/metabolismo , Imunofluorescência , Expressão Gênica/efeitos dos fármacos , Sulfato de Magnésio/farmacologia , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Transição de Fase/efeitos dos fármacos , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Dióxido de Silício/química , Espectrometria por Raios X , Suberites/genética , Suberites/ultraestrutura , Fatores de Tempo
14.
Micron ; 42(5): 401-11, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21194958

RESUMO

In the present study we examined material from the Ashikule Basin of Tibet. Chemical analyses were performed by use of energy dispersive X-ray spectroscopy and electron probe microanalysis to clarify whether the varnish layers that had developed on the surface of the rhyolite are indeed composed of varnish bodies and silica glaze. Electron microscopic analyses revealed that the surface of the varnish is covered both by filamentous hyphae bacterial and cocci-shaped forms. Within the varnish mineral layer in those samples two forms of bacteria-like microorganisms exist; cocci as tightly packed bacterial aggregates [within varnish bodies], and bacillus-like microorganisms [within the varnish matrix, that surrounds the varnish bodies]. The bacillus-like forms are embedded in a network of filaments that have diameters between 35 and 45 nm. These bacilli with the surrounding filaments are assumed to have been involved in biofilm formation (synthesis of extracellular polymeric substances) prior to their live burial. We concluded that the formation of the varnish layers was for the most part biogenically driven by microorganisms.


Assuntos
Bactérias/isolamento & purificação , Compostos Orgânicos/análise , Pintura/microbiologia , Solo/química , Espectrometria por Raios X , Tibet
15.
Chembiochem ; 11(8): 1077-82, 2010 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-20373511

RESUMO

The giant basal spicules (GBS) from Monorhaphis chuni (Porifera [sponges], Hexactinellida) represent the largest biosilica structures on Earth and can reach lengths of 300 cm (diameter of 1.1 cm). The amorphous silica of the inorganic matrix is formed enzymatically by silicatein. During this process, the enzyme remains trapped inside the lamellar-organized spicules. In order to localize the organic silicatein scaffold, the inside of a lamella has been analyzed by nano-secondary ion mass spectrometry (NanoSIMS). It is shown that the GBSs are composed of around 245 concentrically arranged individual siliceous lamellae. These surround an internal siliceous axial cylinder. The lamellae adjacent to the cylinder are thicker (10-30 mum) than the more peripheral lamellae (2-10 microm). One lamella of a thickness of 18 mum has been selected for further analysis. This lamella itself is composed of three sublamellae with an individual thickness of 2-6 microm each, which are then further organized into three cylindrical slats (thickness: 1.6-1.8 microm). Other than the main lamellae, the sublamellae are not separated from each other by gaps. The element analysis of the sublamellae by NanoSIMS revealed that the siliceous matrix is embedded in an organic matrix that consists of up to 6-10 wt/% of C. The pattern of C distribution reflects a distinct zonation of the organic material within the solid intralamellar biosiliceous material. A growth model for the lamella starting from nanosized silica particles is proposed: During formation of a lamella nanosized silica particles fuse, through biosintering processes, to slats that build the individual sublamellae, which then finally form the lamellae. In turn, those lamellae may form the higher structural entity, the axial cylinder.


Assuntos
Poríferos/química , Poríferos/ultraestrutura , Dióxido de Silício/análise , Animais , Carbono/análise , Espectrometria de Massas , Enxofre/análise
16.
Appl Microbiol Biotechnol ; 83(3): 397-413, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19430775

RESUMO

While most forms of multicellular life have developed a calcium-based skeleton, a few specialized organisms complement their body plan with silica. However, of all recent animals, only sponges (phylum Porifera) are able to polymerize silica enzymatically mediated in order to generate massive siliceous skeletal elements (spicules) during a unique reaction, at ambient temperature and pressure. During this biomineralization process (i.e., biosilicification) hydrated, amorphous silica is deposited within highly specialized sponge cells, ultimately resulting in structures that range in size from micrometers to meters. Spicules lend structural stability to the sponge body, deter predators, and transmit light similar to optic fibers. This peculiar phenomenon has been comprehensively studied in recent years and in several approaches, the molecular background was explored to create tools that might be employed for novel bioinspired biotechnological and biomedical applications. Thus, it was discovered that spiculogenesis is mediated by the enzyme silicatein and starts intracellularly. The resulting silica nanoparticles fuse and subsequently form concentric lamellar layers around a central protein filament, consisting of silicatein and the scaffold protein silintaphin-1. Once the growing spicule is extruded into the extracellular space, it obtains final size and shape. Again, this process is mediated by silicatein and silintaphin-1, in combination with other molecules such as galectin and collagen. The molecular toolbox generated so far allows the fabrication of novel micro- and nanostructured composites, contributing to the economical and sustainable synthesis of biomaterials with unique characteristics. In this context, first bioinspired approaches implement recombinant silicatein and silintaphin-1 for applications in the field of biomedicine (biosilica-mediated regeneration of tooth and bone defects) or micro-optics (in vitro synthesis of light waveguides) with promising results.


Assuntos
Materiais Biocompatíveis/metabolismo , Poríferos/metabolismo , Dióxido de Silício/metabolismo , Animais , Materiais Biocompatíveis/química , Poríferos/anatomia & histologia , Poríferos/química , Poríferos/ultraestrutura , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...