Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 10: 1193209, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745132

RESUMO

To assess whether in-silico models can be used to predict the risk of thrombus formation in pulmonary artery pressure sensors (PAPS), a chronic animal study using pigs was conducted. Computed tomography (CT) data was acquired before and immediately after implantation, as well as one and three months after the implantation. Devices were implanted into 10 pigs, each one in the left and right pulmonary artery (PA), to reduce the required number of animal experiments. The implantation procedure aimed at facilitating optimal and non-optimal positioning of the devices to increase chances of thrombus formation. Eight devices were positioned non-optimally. Three devices were positioned in the main PA instead of the left and right PA. Pre-interventional PA geometries were reconstructed from the respective CT images, and the devices were virtually implanted at the exact sites and orientations indicated by the follow-up CT after one month. Transient intra-arterial hemodynamics were calculated using computational fluid dynamics. Volume flow rates were modelled specifically matching the animals body weights. Wall shear stresses (WSS) and oscillatory shear indices (OSI) before and after device implantation were compared. Simulations revealed no relevant changes in any investigated hemodynamic parameters due to device implantation. Even in cases, where devices were implanted in a non-optimal manner, no marked differences in hemodynamic parameters compared to devices implanted in an optimal position were found. Before implantation time and surface-averaged WSS was 2.35±0.47 Pa, whereas OSI was 0.08±0.17, respectively. Areas affected by low WSS magnitudes were 2.5±2.7 cm2, whereas the areas affected by high OSI were 18.1±6.3 cm2. After device implantation, WSS and OSI were 2.45±0.49 Pa and 0.08±0.16, respectively. Surface areas affected by low WSS and high OSI were 2.9±2.7 cm2, and 18.4±6.1 cm2, respectively. This in-silico study indicates that no clinically relevant differences in intra-arterial hemodynamics are occurring after device implantation, even at non-optimal positioning of the sensor. Simultaneously, no embolic events were observed, suggesting that the risk for thrombus formation after device implantation is low and independent of the sensor position.

2.
Analyst ; 142(18): 3360-3369, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28853462

RESUMO

Raman gas spectrometry is introduced as a robust, versatile method for onsite, battery-powered field measurements of gases in the unsaturated and saturated critical zone. In this study, depth-profiles of the concentrations of oxygen and carbon dioxide were simultaneously monitored down to ∼70 meters depth in the subsurface via a transect of drilling holes located in the Hainich Critical Zone Exploratory in central Germany. A special multichannel monitoring system was designed to access and analyze these gases non-consumptively onsite in a closed loop measurement cycle. During the timeframe of six months, seasonal changes in groundwater levels and microbial activity were related to changes observed in gas concentrations. High oxygen concentrations were found in the depths surrounding a karstified aquifer complex, while low oxygen concentrations were found in a fractured aquifer complex. Raman gas depth-profiles complement standard dissolved oxygen measurements as they also deliver oxygen concentrations in the unsaturated zone. The measured depth-profiles of the gas concentrations indicated that regions of anoxia can exist between the aquifer complexes. Lateral transport of O2 in the deeper aquifer complex provides a local source of O2 that can influence metabolism. Correlations were found between the observed CO2 concentrations and pH-values, indicating strong control of carbonate equilibria. The concentrations of O2 and CO2 were largely decoupled, thus simultaneous measurements of O2 soil effluxes give additional insights into biotic and abiotic processes in the Hainich CZE. These results illustrate the versatility of robust onsite Raman multigas measurements of the soil atmosphere and how they can contribute to the analysis of complex processes in previous uncharacterized environments in the critical zone.

3.
Beilstein J Nanotechnol ; 8: 715-722, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28487815

RESUMO

Nanoporous poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate) (HEMA-EDMA) is used as a 3D mesh for spotting lipid arrays. Its porous structure is an ideal matrix for lipid ink to infiltrate, resulting in higher fluorescent signal intensity as compared to similar arrays on strictly 2D substrates like glass. The embedded lipid arrays show high stability against washing steps, while still being accessible for protein and antibody binding. To characterize binding to polymer-embedded lipids we have applied Streptavidin as well as biologically important biotinylated androgen receptor binding onto 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(cap biotinyl) (Biotinyl Cap PE) and anti-DNP IgE recognition of 2,4-dinitrophenyl[1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[6-[(2,4-dinitrophenyl)amino]hexanoyl] (DNP)] antigen. This approach adds lipid arrays to the range of HEMA polymer applications and makes this solid substrate a very attractive platform for a variety of bio-applications.

4.
Anal Chem ; 89(2): 1117-1122, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28043118

RESUMO

Biological N2 fixation is a major input of bioavailable nitrogen, which represents the most frequent factor limiting the agricultural production throughout the world. Especially, the symbiotic association between legumes and Rhizobium bacteria can provide substantial amounts of nitrogen (N) and reduce the need for industrial fertilizers. Despite its importance in the global N cycle, rates of biological nitrogen fixation have proven difficult to quantify. In this work, we propose and demonstrate a simple analytical approach to measure biological N2 fixation rates directly without a proxy or isotopic labeling. We determined a mean N2 fixation rate of 78 ± 5 µmol N2 (g dry weight nodule)-1 h-1 of a Medicago sativa-Rhizobium consortium by continuously analyzing the amount of atmospheric N2 in static environmental chambers with Raman gas spectroscopy. By simultaneously analyzing the CO2 uptake and photosynthetic plant activity, we think that a minimum CO2 mixing ratio might be needed for natural N2 fixation and only used the time interval above this minimum CO2 mixing ratio for N2 fixation rate calculations. The proposed approach relies only on noninvasive measurements of the gas phase and, given its simplicity, indicates the potential to estimate biological nitrogen fixation of legume symbioses not only in laboratory experiments. The same methods can presumably also be used to detect N2 fluxes by denitrification from ecosystems to the atmosphere.


Assuntos
Medicago sativa/enzimologia , Fixação de Nitrogênio , Nitrogênio/metabolismo , Nitrogenase/metabolismo , Rhizobium/enzimologia , Análise Espectral Raman/métodos , Dióxido de Carbono/metabolismo , Medicago sativa/metabolismo , Medicago sativa/microbiologia , Fotossíntese , Rhizobium/metabolismo
5.
Sci Transl Med ; 8(370): 370ra181, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-28003546

RESUMO

Spinobulbar muscular atrophy (SBMA) is an X-linked neuromuscular disease caused by polyglutamine (polyQ) expansion in the androgen receptor (AR) gene. SBMA belongs to the family of polyQ diseases, which are fatal neurodegenerative disorders mainly caused by protein-mediated toxic gain-of-function mechanisms and characterized by deposition of misfolded proteins in the form of aggregates. The neurotoxicity of the polyQ proteins can be modified by phosphorylation at specific sites, thereby providing the rationale for the development of disease-specific treatments. We sought to identify signaling pathways that modulate polyQ-AR phosphorylation for therapy development. We report that cyclin-dependent kinase 2 (CDK2) phosphorylates polyQ-AR specifically at Ser96 Phosphorylation of polyQ-AR by CDK2 increased protein stabilization and toxicity and is negatively regulated by the adenylyl cyclase (AC)/protein kinase A (PKA) signaling pathway. To translate these findings into therapy, we developed an analog of pituitary adenylyl cyclase activating polypeptide (PACAP), a potent activator of the AC/PKA pathway. Chronic intranasal administration of the PACAP analog to knock-in SBMA mice reduced Ser96 phosphorylation, promoted polyQ-AR degradation, and ameliorated disease outcome. These results provide proof of principle that noninvasive therapy based on the use of PACAP analogs is a therapeutic option for SBMA.


Assuntos
Transtornos Musculares Atróficos/metabolismo , Peptídeos/química , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Receptores Androgênicos/metabolismo , Animais , Proliferação de Células , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Glutamina/metabolismo , Células HEK293 , Humanos , Ligantes , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Transgênicos , Células PC12 , Fosforilação , Desnaturação Proteica , Dobramento de Proteína , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
6.
Nat Commun ; 7: 12657, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27582363

RESUMO

Artificial light-harvesting systems have until now not been able to self-assemble into structures with a large photon capture cross-section that upon a stimulus reversibly can switch into an inactive state. Here we describe a simple and robust FLFL-dipeptide construct to which a meso-tetraphenylporphyrin has been appended and which self-assembles to fibrils, platelets or nanospheres depending on the solvent composition. The fibrils, functioning as quenched antennas, give intense excitonic couplets in the electronic circular dichroism spectra which are mirror imaged if the unnatural FDFD-analogue is used. By slightly increasing the solvent polarity, these light-harvesting fibres disassemble to spherical structures with silent electronic circular dichroism spectra but which fluoresce. Upon further dilution with the nonpolar solvent, the intense Cotton effects are recovered, thus proving a reversible switching. A single crystal X-ray structure shows a head-to-head arrangement of porphyrins that explains both their excitonic coupling and quenched fluorescence.

7.
Analyst ; 141(6): 2023-9, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26882863

RESUMO

In today's fruit conservation rooms the ripening of harvested fruit is delayed by precise management of the interior oxygen (O2) and carbon dioxide (CO2) levels. Ethylene (C2H4), a natural plant hormone, is commonly used to trigger fruit ripening shortly before entering the market. Monitoring of these critical process gases, also of the increasingly favored cooling agent ammonia (NH3), is a crucial task in modern postharvest fruit management. The goal of this work was to develop and characterize a gas sensor setup based on fiber enhanced Raman spectroscopy for fast (time resolution of a few minutes) and non-destructive process gas monitoring throughout the complete postharvest production chain encompassing storage and transport in fruit conservation chambers as well as commercial fruit ripening in industrial ripening rooms. Exploiting a micro-structured hollow-core photonic crystal fiber for analyte gas confinement and sensitivity enhancement, the sensor features simultaneous quantification of O2, CO2, NH3 and C2H4 without cross-sensitivity in just one single measurement. Laboratory measurements of typical fruit conservation gas mixtures showed that the sensor is capable of quantifying O2 and CO2 concentration levels with accuracy of 3% or less with respect to reference concentrations. The sensor detected ammonia concentrations, relevant for chemical alarm purposes. Due to the high spectral resolution of the gas sensor, ethylene could be quantified simultaneously with O2 and CO2 in a multi-component mixture. These results indicate that fiber enhanced Raman sensors have a potential to become universally usable on-site gas sensors for controlled atmosphere applications in postharvest fruit management.


Assuntos
Frutas/crescimento & desenvolvimento , Gases/análise , Análise Espectral Raman/instrumentação , Frutas/efeitos dos fármacos , Gases/farmacologia , Limite de Detecção , Fatores de Tempo
8.
Anal Chem ; 87(21): 11137-42, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26492154

RESUMO

In static environmental chamber experiments, the precision of gas flux measurements can be significantly improved by a thorough gas leakage correction to avoid under- or overestimation of biological activity such as respiration or photosynthesis. Especially in the case of small biological net gas exchange rates or gas accumulation phases during long environmental monitoring experiments, gas leakage fluxes could distort the analysis of the biogenic gas kinetics. Here we propose and demonstrate a general protocol for online correction of diffusion-driven gas leakage in plant chambers by simultaneous quantification of the inert tracer sulfur hexafluoride (SF6) and the investigated biogenic gases using enhanced Raman spectroscopy. By quantifying the leakage rates of carbon dioxide (CO2), methane (CH4), and hydrogen (H2) simultaneously with SF6 in the test chamber, their effective diffusivity ratios of approximately 1.60, 1.96, and 5.65 were determined, each related to SF6. Because our experiments suggest that the effective diffusivity ratios are reproducible for an individual static environmental chamber, even under varying concentration gradients and slight changes of the chamber sealing, an experimental method to quantify gas leakage fluxes by using effective diffusivity ratios and SF6 leakage fluxes is proposed. The method is demonstrated by quantifying the CO2 net exchange rate of a plant-soil ecosystem (Mirabilis jalapa). By knowing the effective chamber diffusivity ratio CO2/SF6 and the measured SF6 leakage rate during the experiment, the leakage contribution to the total CO2 exchange rate could be calculated and the biological net CO2 concentration change within the chamber atmosphere determined.


Assuntos
Gases/química , Análise Espectral/métodos , Hexafluoreto de Enxofre/química
9.
Analyst ; 140(9): 3143-9, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25751376

RESUMO

Soil and groundwater contamination with benzene can cause serious environmental damage. However, many soil microorganisms are capable to adapt and are known to strongly control the fate of organic contamination. Innovative cavity enhanced Raman multi-gas spectroscopy (CERS) was applied to investigate the short-term response of the soil micro-flora to sudden surface contamination with benzene regarding the temporal variations of gas products and their exchange rates with the adjacent atmosphere. (13)C-labeled benzene was spiked on a silty-loamy soil column in order to track and separate the changes in heterotrophic soil respiration - involving (12)CO2 and O2- from the natural attenuation process of benzene degradation to ultimately form (13)CO2. The respiratory quotient (RQ) decreased from a value 0.98 to 0.46 directly after the spiking and increased again within 33 hours to a value of 0.72. This coincided with the maximum (13)CO2 concentration rate (0.63 µmol m(-2) s(-1)), indicating the highest benzene degradation at 33 hours after the spiking event. The diffusion of benzene in the headspace and the biodegradation into (13)CO2 were simultaneously monitored and 12 days after the benzene spiking no measurable degradation was detected anymore. The RQ finally returned to a value of 0.96 demonstrating the reestablished aerobic respiration.


Assuntos
Benzeno/metabolismo , Dióxido de Carbono/metabolismo , Oxigênio/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Benzeno/análise , Biodegradação Ambiental , Dióxido de Carbono/análise , Poluição Ambiental/análise , Oxigênio/análise , Solo/química , Poluentes do Solo/análise , Análise Espectral Raman/métodos
10.
Methods Mol Biol ; 1204: 197-204, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25182772

RESUMO

Spinal bulbar muscular atrophy (SBMA) (also known as Kennedy's disease) is a motor degenerative disease caused by an amplification of the polyglutamine stretch at the N-terminus of the human androgen receptor (AR). Amplifications larger than 40 glutamine residues are thought to lead to the disease. A characteristic feature of this disease is a ligand-dependent misfolding and aggregation of the mutant receptor that lead to the death of motor neurons. Initially, large cytoplasmic and nuclear aggregates reaching sizes of 6 µm were thought to be the pathogenic agents. Later studies have suggested that oligomeric species with sizes of less than 1 µm that occur prior to the formation of the larger aggregates are the toxic agents. However, there have been disagreements regarding the shape of these oligomers, as most studies have been carried out with peptide fragments of the androgen receptor containing different lengths of polyglutamine stretch. We have isolated the wild-type AR with a polyglutamine stretch of 22 (ARQ22) and a mutant receptor with a stretch of 65 (ARQ65) using a baculovirus system and have analyzed the oligomeric structures formed by these receptors with atomic force microscopy. This method has allowed us to determine the conformations of the full-length wild-type and mutant AR and revealed the conformation of the mutant AR that causes SBMA.


Assuntos
Microscopia de Força Atômica/métodos , Atrofia Muscular Espinal/genética , Receptores Androgênicos/química , Receptores Androgênicos/genética , Animais , Baculoviridae/genética , Técnicas de Cultura de Células/métodos , Linhagem Celular , Humanos , Insetos , Mutação , Peptídeos/química , Peptídeos/genética , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Software
11.
Nanoscale ; 6(17): 10413-22, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25080095

RESUMO

CdSe/CdS-Quantum-dots-quantum-rods (QDQRs) with an aspect ratio of ∼ 6 are prepared via the seeded growth method, encapsulated within a shell of crosslinked poly(isoprene)-block-poly(ethylene glycol) (PI-b-PEG) diblock copolymer, and transferred from the organic phase into aqueous media. Their photoluminescence quantum yield (PLQY) of 78% is not compromised by the phase transfer. Within a period of two months the PLQY of QDQRs in aqueous solution at neutral pH decreases only slightly (to ∼ 65%). The two-photon (TP) action cross sections of QDQRs (∼ 10(5) GM) are two orders of magnitude higher than those of CdSe/CdS/ZnS-core/shell/shell quantum dots (QDs, ∼ 10(3) GM) with comparable diameter (∼ 5 nm). After applying PI-b-PEG encapsulated QDQRs onto the small intestinal mucosa of mice in vivo, their strong red fluorescence can easily be observed by two-photon laser scanning microscopy (TPLSM) and clearly distinguished from autofluorescent background. Our results demonstrate that PI-b-PEG encapsulated CdSe/CdS-QDQRs are excellent probes for studying the uptake and fate of nanoparticles by two-photon imaging techniques in vivo.


Assuntos
Compostos de Cádmio , Corantes Fluorescentes , Microscopia Confocal/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Pontos Quânticos , Compostos de Selênio , Sulfetos , Animais , Compostos de Cádmio/química , Corantes Fluorescentes/síntese química , Intestinos/citologia , Teste de Materiais , Camundongos , Nanotubos/química , Nanotubos/ultraestrutura , Tamanho da Partícula , Polímeros/química , Reprodutibilidade dos Testes , Compostos de Selênio/química , Sensibilidade e Especificidade , Sulfetos/química , Propriedades de Superfície
12.
Biochim Biophys Acta ; 1822(6): 1070-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22366762

RESUMO

Hormone-dependent aggregation of the androgen receptor (AR) with a polyglutamine (polyQ) stretch amplification (>38) is considered to be the causative agent of the neurodegenerative disorder spinal and bulbar muscular atrophy (SBMA), consistent with related neurodegenerative diseases involving polyQ-extended proteins. In spite of the widespread acceptance of this common causal hypothesis, little attention has been paid to its apparent incompatibility with the observation of AR aggregation in healthy individuals with no polyQ stretch amplification. Here we used atomic force microscopy (AFM) to characterize sub-micrometer scale aggregates of the wild-type (22 glutamines) and the SBMA form (65 glutamines), as well as a polyQ deletion mutant (1 glutamine) and a variant with a normal length polyQ stretch but with a serine to alanine double mutation elsewhere in the protein. We used a baculovirus-insect cell expression system to produce full-length proteins for these structural analyses. We related the AFM findings to cytotoxicity as measured by expression of the receptors in Drosophila motoneurons or in neuronal cells in culture. We found that the pathogenic AR mutants formed oligomeric fibrils up to 300-600nm in length. These were clearly different from annular oligomers 120-180nm in diameter formed by the nonpathogenic receptors. We could also show that melatonin, which is known to ameliorate the pathological phenotype in the fly model, caused polyQ-extended AR to form annular oligomers. Further comparative investigation of these reproducibly distinct toxic and non-toxic oligomers could advance our understanding of the molecular basis of the polyQ pathologies.


Assuntos
Atrofia Bulboespinal Ligada ao X/metabolismo , Estrutura Quaternária de Proteína , Receptores Androgênicos/química , Animais , Atrofia Bulboespinal Ligada ao X/genética , Atrofia Bulboespinal Ligada ao X/patologia , Células Cultivadas , Modelos Animais de Doenças , Drosophila , Humanos , Melatonina/farmacologia , Microscopia de Força Atômica , Neurônios/metabolismo , Peptídeos , Dobramento de Proteína , Multimerização Proteica , Deficiências na Proteostase , Receptores Androgênicos/metabolismo
13.
Proc Natl Acad Sci U S A ; 105(35): 12736-41, 2008 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-18755898

RESUMO

Bacteriochlorophylls (BChls) c, d, and e are the main light-harvesting pigments of green photosynthetic bacteria that self-assemble into nanostructures within the chlorosomes forming the most efficient antennas of photosynthetic organisms. All previous models of the chlorosomal antennae, which are quite controversially discussed because no single crystals could be grown so far from these organelles, involve a strong hydrogen-bonding interaction between the 3(1) hydroxyl group and the 13(1) carbonyl group. We have synthesized different self-assemblies of BChl c mimics having the same functional groups as the natural counterparts, that is, a hydroxyethyl substituent, a carbonyl group and a divalent metal atom ligated by a tetrapyrrole. These artificial BChl mimics have been shown by single crystal x-ray diffraction to form extended stacks that are packed by hydrophobic interactions and in the absence of hydrogen bonding. Time-resolved photoluminescence proves the ordered nature of the self-assembled stacks. FT-IR spectra show that on self-assembly the carbonyl frequency is shifted by approximately 30 cm(-1) to lower wavenumbers. From the FT-IR data we can infer the proximal interactions between the BChls in the chlorosomes consistent with a single crystal x-ray structure that shows a weak electrostatic interaction between carbonyl groups and the central zinc atom.


Assuntos
Bacterioclorofilas/química , Chlorobi/química , Mimetismo Molecular , Proteínas de Bactérias/química , Cristalografia por Raios X , Magnésio , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Porfirinas/química , Estrutura Quaternária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier , Fatores de Tempo , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...