Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(5): 056303, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38364168

RESUMO

Employing flux-grown single crystal WSe_{2}, we report charge-carrier scattering behaviors measured in h-BN encapsulated monolayer field effect transistors. We observe a nonmonotonic change of transport mobility as a function of hole density in the degenerately doped sample, which can be explained by energy dependent scattering amplitude of strong defects calculated using the T-matrix approximation. Utilizing long mean-free path (>500 nm), we also demonstrate the high quality of our electronic devices by showing quantized conductance steps from an electrostatically defined quantum point contact, showing the potential for creating ultrahigh quality quantum optoelectronic devices based on atomically thin semiconductors.

2.
Future Oncol ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38348690

RESUMO

Neuregulin 1 (NRG1) fusions are oncogenic drivers that have been detected in non-small-cell lung cancer (NSCLC), pancreatic ductal adenocarcinoma (PDAC) and other solid tumors. NRG1 fusions are rare, occurring in less than 1% of solid tumors. Patients with NRG1 fusion positive (NRG1+) cancer have limited therapeutic options. Zenocutuzumab is a novel, bispecific IgG1 antibody that targets both HER2 and HER3 proteins and inhibits NRG1 binding through a 'Dock & Block®' mechanism of action. Here, we describe the rationale and design of the phase II component of the eNRGy trial, part of the overall, open-label phase I/II, multicenter trial exploring the safety, tolerability, pharmacokinetics, pharmacodynamics, immunogenicity and antitumor activity of zenocutuzumab in patients with NRG1+ NSCLC, PDAC or other solid tumors.


NRG1 gene fusions are rare mutations that cause cancer cells to grow. These fusions are found in many different types of cancer. Tumors with NRG1 gene fusions do not respond well to standard treatment options. Zenocutuzumab, or Zeno, is a treatment that is being tested to see if it can stop cancer that is growing because of NRG1 gene fusions. Here, we describe the reasoning for and design of an ongoing clinical trial (eNRGy) designed to study the efficacy (how well it works) and safety of Zeno in patients with cancer that has NRG1 gene fusions. The eNRGy trial is recruiting patients with cancer that has NRG1 gene fusions, including non-small-cell lung cancer, pancreatic cancer and others. Patients who join this trial will receive Zeno once every 2 weeks until their cancer grows. The main goal (primary end point) of this trial is to determine the percentage of patients whose tumors decrease in size by 30% or more. The eNRGy trial is currently enrolling patients. For more information, refer to ClinicalTrials.gov (Identifier: NCT02912949), visit https://nrg1.com/, or call 1-833-NRG-1234.

3.
Nat Commun ; 14(1): 8264, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092731

RESUMO

Coupled two-dimensional electron-hole bilayers provide a unique platform to study strongly correlated Bose-Fermi mixtures in condensed matter. Electrons and holes in spatially separated layers can bind to form interlayer excitons, composite Bosons expected to support high-temperature exciton condensates. The interlayer excitons can also interact strongly with excess charge carriers when electron and hole densities are unequal. Here, we use optical spectroscopy to quantitatively probe the local thermodynamic properties of strongly correlated electron-hole fluids in MoSe2/hBN/WSe2 heterostructures. We observe a discontinuity in the electron and hole chemical potentials at matched electron and hole densities, a definitive signature of an excitonic insulator ground state. The excitonic insulator is stable up to a Mott density of ~0.8 × 1012 cm-2 and has a thermal ionization temperature of ~70 K. The density dependence of the electron, hole, and exciton chemical potentials reveals strong correlation effects across the phase diagram. Compared with a non-interacting uniform charge distribution, the correlation effects lead to significant attractive exciton-exciton and exciton-charge interactions in the electron-hole fluid. Our work highlights the unique quantum behavior that can emerge in strongly correlated electron-hole systems.

4.
Nano Lett ; 22(24): 10140-10146, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36485010

RESUMO

Ultrafast charge transfer processes provide a facile way to create interlayer excitons in directly contacted transition metal dichalcogenide (TMD) layers. More sophisticated heterostructures composed of TMD/hBN/TMD enable new ways to control interlayer exciton properties and achieve novel exciton phenomena, such as exciton insulators and condensates, where longer lifetimes are desired. In this work, we experimentally study the charge transfer dynamics in a heterostructure composed of a 1 nm thick hBN spacer between MoSe2 and WSe2 monolayers. We observe the hole transfer from MoSe2 to WSe2 through the hBN barrier with a time constant of 500 ps, which is over 3 orders of magnitude slower than that between TMD layers without a spacer. Furthermore, we observe strong competition between the interlayer charge transfer and intralayer exciton-exciton annihilation processes at high excitation densities. Our work opens possibilities to understand charge transfer pathways in TMD/hBN/TMD heterostructures for the efficient generation and control of interlayer excitons.

5.
Nat Commun ; 13(1): 3431, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701395

RESUMO

Techniques to mold the flow of light on subwavelength scales enable fundamentally new optical systems and device applications. The realization of programmable, active optical systems with fast, tunable components is among the outstanding challenges in the field. Here, we experimentally demonstrate a few-pixel beam steering device based on electrostatic gate control of excitons in an atomically thin semiconductor with strong light-matter interactions. By combining the high reflectivity of a MoSe2 monolayer with a graphene split-gate geometry, we shape the wavefront phase profile to achieve continuously tunable beam deflection with a range of 10°, two-dimensional beam steering, and switching times down to 1.6 nanoseconds. Our approach opens the door for a new class of atomically thin optical systems, such as rapidly switchable beam arrays and quantum metasurfaces operating at their fundamental thickness limit.

6.
Nat Mater ; 20(4): 480-487, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33398121

RESUMO

Moiré superlattices in twisted van der Waals materials have recently emerged as a promising platform for engineering electronic and optical properties. A major obstacle to fully understanding these systems and harnessing their potential is the limited ability to correlate direct imaging of the moiré structure with optical and electronic properties. Here we develop a secondary electron microscope technique to directly image stacking domains in fully functional van der Waals heterostructure devices. After demonstrating the imaging of AB/BA and ABA/ABC domains in multilayer graphene, we employ this technique to investigate reconstructed moiré patterns in twisted WSe2/WSe2 bilayers and directly correlate the increasing moiré periodicity with the emergence of two distinct exciton species in photoluminescence measurements. These states can be tuned individually through electrostatic gating and feature different valley coherence properties. We attribute our observations to the formation of an array of two intralayer exciton species that reside in alternating locations in the superlattice, and open up new avenues to realize tunable exciton arrays in twisted van der Waals heterostructures, with applications in quantum optoelectronics and explorations of novel many-body systems.

7.
Nat Nanotechnol ; 15(9): 750-754, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32661373

RESUMO

Van der Waals heterostructures obtained via stacking and twisting have been used to create moiré superlattices1, enabling new optical and electronic properties in solid-state systems. Moiré lattices in twisted bilayers of transition metal dichalcogenides (TMDs) result in exciton trapping2-5, host Mott insulating and superconducting states6 and act as unique Hubbard systems7-9 whose correlated electronic states can be detected and manipulated optically. Structurally, these twisted heterostructures feature atomic reconstruction and domain formation10-14. However, due to the nanoscale size of moiré domains, the effects of atomic reconstruction on the electronic and excitonic properties have not been systematically investigated. Here we use near-0°-twist-angle MoSe2/MoSe2 bilayers with large rhombohedral AB/BA domains15 to directly probe the excitonic properties of individual domains with far-field optics. We show that this system features broken mirror/inversion symmetry, with the AB and BA domains supporting interlayer excitons with out-of-plane electric dipole moments in opposite directions. The dipole orientation of ground-state Γ-K interlayer excitons can be flipped with electric fields, while higher-energy K-K interlayer excitons undergo field-asymmetric hybridization with intralayer K-K excitons. Our study reveals the impact of crystal symmetry on TMD excitons and points to new avenues for realizing topologically non-trivial systems16,17, exotic metasurfaces18, collective excitonic phases19 and quantum emitter arrays20,21 via domain-pattern engineering.

8.
Phys Rev Lett ; 124(21): 217403, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32530686

RESUMO

The twist degree of freedom provides a powerful new tool for engineering the electrical and optical properties of van der Waals heterostructures. Here, we show that the twist angle can be used to control the spin-valley properties of transition metal dichalcogenide bilayers by changing the momentum alignment of the valleys in the two layers. Specifically, we observe that the interlayer excitons in twisted WSe_{2}/WSe_{2} bilayers exhibit a high (>60%) degree of circular polarization (DOCP) and long valley lifetimes (>40 ns) at zero electric and magnetic fields. The valley lifetime can be tuned by more than 3 orders of magnitude via electrostatic doping, enabling switching of the DOCP from ∼80% in the n-doped regime to <5% in the p-doped regime. These results open up new avenues for tunable chiral light-matter interactions, enabling novel device schemes that exploit the valley degree of freedom.

9.
Nano Lett ; 20(6): 4095-4101, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32396734

RESUMO

Tuning electrical conductivity of semiconducting materials through substitutional doping is crucial for fabricating functional devices. This, however, has not been fully realized in two-dimensional (2D) materials due to the difficulty of homogeneously controlling the dopant concentrations and the lack of systematic study of the net impact of substitutional dopants separate from that of the unintentional doping from the device fabrication processes. Here, we grow wafer-scale, continuous MoS2 monolayers with tunable concentrations of Nb and Re and fabricate devices using a polymer-free approach to study the direct electrical impact of substitutional dopants in MoS2 monolayers. In particular, the electrical conductivity of Nb doped MoS2 in the absence of electrostatic gating is reproducibly tuned over 7 orders of magnitude by controlling the Nb concentration. Our study further indicates that the dopant carriers do not fully ionize in the 2D limit, unlike in their three-dimensional analogues, which is explained by weaker charge screening and impurity band conduction. Moreover, we show that the dopants are stable, which enables the doped films to be processed as independent building blocks that can be used as electrodes for functional circuitry.

10.
Phys Rev Lett ; 124(2): 027401, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-32004011

RESUMO

We demonstrate a new approach for dynamically manipulating the optical response of an atomically thin semiconductor, a monolayer of MoSe_{2}, by suspending it over a metallic mirror. First, we show that suspended van der Waals heterostructures incorporating a MoSe_{2} monolayer host spatially homogeneous, lifetime-broadened excitons. Then, we interface this nearly ideal excitonic system with a metallic mirror and demonstrate control over the exciton-photon coupling. Specifically, by electromechanically changing the distance between the heterostructure and the mirror, thereby changing the local photonic density of states in a controllable and reversible fashion, we show that both the absorption and emission properties of the excitons can be dynamically modulated. This electromechanical control over exciton dynamics in a mechanically flexible, atomically thin semiconductor opens up new avenues in cavity quantum optomechanics, nonlinear quantum optics, and topological photonics.

11.
J Clin Oncol ; 38(1): 1-10, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31682550

RESUMO

PURPOSE: Genomes of tumors that are deficient in DNA mismatch repair (dMMR) have high microsatellite instability (MSI-H) and harbor hundreds to thousands of somatic mutations that encode potential neoantigens. Such tumors are therefore likely to be immunogenic, triggering upregulation of immune checkpoint proteins. Pembrolizumab, an anti‒programmed death-1 monoclonal antibody, has antitumor activity against MSI-H/dMMR cancer. We report data from the phase II KEYNOTE-158 study of pembrolizumab in patients with previously treated, advanced noncolorectal MSI-H/dMMR cancer. PATIENTS AND METHODS: Eligible patients with histologically/cytologically confirmed MSI-H/dMMR advanced noncolorectal cancer who experienced failure with prior therapy received pembrolizumab 200 mg once every 3 weeks for 2 years or until disease progression, unacceptable toxicity, or patient withdrawal. Radiologic imaging was performed every 9 weeks for the first year of therapy and every 12 weeks thereafter. The primary end point was objective response rate per Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1, as assessed by independent central radiologic review. RESULTS: Among 233 enrolled patients, 27 tumor types were represented, with endometrial, gastric, cholangiocarcinoma, and pancreatic cancers being the most common. Median follow up was 13.4 months. Objective response rate was 34.3% (95% CI, 28.3% to 40.8%). Median progression-free survival was 4.1 months (95% CI, 2.4 to 4.9 months) and median overall survival was 23.5 months (95% CI, 13.5 months to not reached). Treatment-related adverse events occurred in 151 patients (64.8%). Thirty-four patients (14.6%) had grade 3 to 5 treatment-related adverse events. Grade 5 pneumonia occurred in one patient; there were no other treatment-related fatal adverse events. CONCLUSION: Our study demonstrates the clinical benefit of anti-programmed death-1 therapy with pembrolizumab among patients with previously treated unresectable or metastatic MSI-H/dMMR noncolorectal cancer. Toxicity was consistent with previous experience of pembrolizumab monotherapy.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Antineoplásicos Imunológicos/administração & dosagem , Reparo de Erro de Pareamento de DNA , Instabilidade de Microssatélites , Neoplasias/tratamento farmacológico , Neoplasias/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais Humanizados/efeitos adversos , Antineoplásicos Imunológicos/efeitos adversos , Esquema de Medicação , Feminino , Humanos , Infusões Intravenosas , Masculino , Pessoa de Meia-Idade , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Adulto Jovem
12.
Science ; 366(6467): 870-875, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31727834

RESUMO

A van der Waals heterostructure built from atomically thin semiconducting transition metal dichalcogenides (TMDs) enables the formation of excitons from electrons and holes in distinct layers, producing interlayer excitons with large binding energy and a long lifetime. By employing heterostructures of monolayer TMDs, we realize optical and electrical generation of long-lived neutral and charged interlayer excitons. We demonstrate that neutral interlayer excitons can propagate across the entire sample and that their propagation can be controlled by excitation power and gate electrodes. We also use devices with ohmic contacts to facilitate the drift motion of charged interlayer excitons. The electrical generation and control of excitons provide a route for achieving quantum manipulation of bosonic composite particles with complete electrical tunability.

13.
J Clin Oncol ; 37(4): 318-327, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30557521

RESUMO

PURPOSE: Biomarkers that can predict response to anti-programmed cell death 1 (PD-1) therapy across multiple tumor types include a T-cell-inflamed gene-expression profile (GEP), programmed death ligand 1 (PD-L1) expression, and tumor mutational burden (TMB). Associations between these biomarkers and the clinical efficacy of pembrolizumab were evaluated in a clinical trial that encompassed 20 cohorts of patients with advanced solid tumors. METHODS: KEYNOTE-028 ( ClinicalTrials.gov identifier: NCT02054806) is a nonrandomized, phase Ib trial that enrolled 475 patients with PD-L1-positive advanced solid tumors who were treated with pembrolizumab 10 mg/kg every 2 weeks for 2 years or until confirmed disease progression or unacceptable toxicity occurred. The primary end point was objective response rate (ORR; by RECIST v1.1, investigator review). Secondary end points included safety, progression-free survival (PFS), and overall survival (OS). Relationships between T-cell-inflamed GEP, PD-L1 expression, and TMB and antitumor activity were exploratory end points. RESULTS: ORRs (with 95% CIs) ranged from 0% (0.0% to 14.2%) in pancreatic cancer to 33% (15.6% to 55.3%) in small-cell lung cancer. Across cohorts, median (95% CI) PFS ranged from 1.7 months (1.5 to 2.9 months) to 6.8 months (1.9 to 14.1 months) in pancreatic and thyroid cancers, respectively, and median OS from 3.9 months (2.8 to 5.5 months) to 21.1 months (9.1 to 22.4 months) in vulvar and carcinoid tumors, respectively. Higher response rates and longer PFS were demonstrated in tumors with higher T-cell-inflamed GEP, PD-L1 expression, and/or TMB. Correlations of TMB with GEP and PD-L1 were low. Response patterns indicate that patients with tumors that had high levels of both TMB and inflammatory markers (GEP or PD-L1) represent a population with the highest likelihood of response. Safety was similar and consistent with prior pembrolizumab reports. CONCLUSION: A T-cell--inflamed GEP, PD-L1 expression, and TMB predicted response to pembrolizumab in multiple tumor types. These biomarkers (alone/in combination) may help identify patients who have a higher likelihood of response to anti-PD-1 therapies across a broad spectrum of cancers.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/genética , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Mutação , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linfócitos T/efeitos dos fármacos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais Humanizados/efeitos adversos , Antineoplásicos Imunológicos/efeitos adversos , Tomada de Decisão Clínica , Feminino , Predisposição Genética para Doença , Humanos , Linfócitos do Interstício Tumoral/imunologia , Masculino , Pessoa de Meia-Idade , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/mortalidade , Ensaios Clínicos Controlados não Aleatórios como Assunto , Seleção de Pacientes , Fenótipo , Receptor de Morte Celular Programada 1/imunologia , Intervalo Livre de Progressão , Fatores de Risco , Linfócitos T/imunologia , Fatores de Tempo , Transcriptoma , Adulto Jovem
14.
Science ; 362(6411)2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30309915

RESUMO

Programmed cell death protein-1 (PD-1) and programmed cell death ligand-1 (PD-L1) checkpoint blockade immunotherapy elicits durable antitumor effects in multiple cancers, yet not all patients respond. We report the evaluation of >300 patient samples across 22 tumor types from four KEYNOTE clinical trials. Tumor mutational burden (TMB) and a T cell-inflamed gene expression profile (GEP) exhibited joint predictive utility in identifying responders and nonresponders to the PD-1 antibody pembrolizumab. TMB and GEP were independently predictive of response and demonstrated low correlation, suggesting that they capture distinct features of neoantigenicity and T cell activation. Analysis of The Cancer Genome Atlas database showed TMB and GEP to have a low correlation, and analysis by joint stratification revealed biomarker-defined patterns of targetable-resistance biology. These biomarkers may have utility in clinical trial design by guiding rational selection of anti-PD-1 monotherapy and combination immunotherapy regimens.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/genética , Terapia de Alvo Molecular/métodos , Neoplasias/genética , Neoplasias/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Pontos de Checagem do Ciclo Celular , Marcadores Genéticos , Humanos , Imunoterapia , Inflamação/genética , Mutação , Linfócitos T/imunologia , Transcriptoma , Carga Tumoral/genética
15.
Science ; 357(6349): 409-413, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28596308

RESUMO

The genomes of cancers deficient in mismatch repair contain exceptionally high numbers of somatic mutations. In a proof-of-concept study, we previously showed that colorectal cancers with mismatch repair deficiency were sensitive to immune checkpoint blockade with antibodies to programmed death receptor-1 (PD-1). We have now expanded this study to evaluate the efficacy of PD-1 blockade in patients with advanced mismatch repair-deficient cancers across 12 different tumor types. Objective radiographic responses were observed in 53% of patients, and complete responses were achieved in 21% of patients. Responses were durable, with median progression-free survival and overall survival still not reached. Functional analysis in a responding patient demonstrated rapid in vivo expansion of neoantigen-specific T cell clones that were reactive to mutant neopeptides found in the tumor. These data support the hypothesis that the large proportion of mutant neoantigens in mismatch repair-deficient cancers make them sensitive to immune checkpoint blockade, regardless of the cancers' tissue of origin.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Biomarcadores Tumorais/antagonistas & inibidores , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/terapia , Síndromes Neoplásicas Hereditárias/imunologia , Síndromes Neoplásicas Hereditárias/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos de Neoplasias/imunologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Reparo de Erro de Pareamento de DNA , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Síndromes Neoplásicas Hereditárias/genética , Síndromes Neoplásicas Hereditárias/mortalidade , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T/imunologia , Adulto Jovem
16.
Nat Nanotechnol ; 12(9): 856-860, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28650440

RESUMO

Transition metal dichalcogenide (TMD) monolayers with a direct bandgap feature tightly bound excitons, strong spin-orbit coupling and spin-valley degrees of freedom. Depending on the spin configuration of the electron-hole pairs, intra-valley excitons of TMD monolayers can be either optically bright or dark. Dark excitons involve nominally spin-forbidden optical transitions with a zero in-plane transition dipole moment, making their detection with conventional far-field optical techniques challenging. Here, we introduce a method for probing the optical properties of two-dimensional materials via near-field coupling to surface plasmon polaritons (SPPs). This coupling selectively enhances optical transitions with dipole moments normal to the two-dimensional plane, enabling direct detection of dark excitons in TMD monolayers. When a WSe2 monolayer is placed on top of a single-crystal silver film, its emission into near-field-coupled SPPs displays new spectral features whose energies and dipole orientations are consistent with dark neutral and charged excitons. The SPP-based near-field spectroscopy significantly improves experimental capabilities for probing and manipulating exciton dynamics of atomically thin materials, thus opening up new avenues for realizing active metasurfaces and robust optoelectronic systems, with potential applications in information processing and communication.

17.
Cancer Prev Res (Phila) ; 8(12): 1131-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26471236

RESUMO

This study was conducted to determine the safety and efficacy of the green tea-derived Polyphenon E (Poly E) in patients with Barrett's Esophagus (BE). Subjects were randomized to a 6-month, twice daily (BID) oral treatment of placebo or Poly E (200, 400, or 600 mg). Endoscopic evaluation, including biopsies, was performed before and after treatment. The primary objective was to demonstrate safety; secondary objectives investigated catechin accumulation and effects in clinical specimens. Of the 44 enrolled subjects, 11 received placebo, and 33 received Poly E. No dose-limiting toxicities were encountered, and a maximum tolerated dose (MTD) was not reached. The recommended phase II dose was 600 mg twice daily. The most common treatment-related adverse events (AE) in Poly E-treated subjects were grade I and II nausea, grade I belching, and grade I lactate dehydrogenase (LDH) elevation. No treatment-related AEs were reported in placebo-treated subjects, aside from grade I laboratory abnormalities. Pill counts and subject diaries were not consistently collected, and compliance was difficult to determine. However, on the basis of an intention-to-treat analysis, there was a significant relationship between Poly E dose and esophageal EGCG level--mean changes (pmol/g) of 0.79 (placebo), 6.06 (200 mg), 35.67 (400 mg), and 34.95 (600 mg); P = 0.005. There was a possible relationship between Poly E dose and urine PGE-M concentration. In conclusion, Poly E was well-tolerated, and treatment with Poly E (400 and 600 mg) but not Poly E (200 mg) or placebo resulted in clinically relevant and detectable EGCG accumulation in the target organ, esophageal mucosa.


Assuntos
Esôfago de Barrett/tratamento farmacológico , Catequina/análogos & derivados , Fitoterapia/métodos , Idoso , Idoso de 80 Anos ou mais , Biópsia , Catequina/administração & dosagem , Catequina/efeitos adversos , Catequina/análise , Catequina/metabolismo , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Método Duplo-Cego , Esofagoscopia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
18.
Nano Lett ; 15(6): 3716-22, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26020454

RESUMO

We study the impact of electrode band structure on transport through single-molecule junctions by measuring the conductance of pyridine-based molecules using Ag and Au electrodes. Our experiments are carried out using the scanning tunneling microscope based break-junction technique and are supported by density functional theory based calculations. We find from both experiments and calculations that the coupling of the dominant transport orbital to the metal is stronger for Au-based junctions when compared with Ag-based junctions. We attribute this difference to relativistic effects, which result in an enhanced density of d-states at the Fermi energy for Au compared with Ag. We further show that the alignment of the conducting orbital relative to the Fermi level does not follow the work function difference between two metals and is different for conjugated and saturated systems. We thus demonstrate that the details of the molecular level alignment and electronic coupling in metal-organic interfaces do not follow simple rules but are rather the consequence of subtle local interactions.

19.
Pharmacol Res Perspect ; 3(2): e00113, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25729580

RESUMO

Vemurafenib, a selective inhibitor of oncogenic BRAF kinase carrying the V600 mutation, is approved for treatment of advanced BRAF mutation-positive melanoma. This study characterized mass balance, metabolism, rates/routes of elimination, and disposition of (14)C-labeled vemurafenib in patients with metastatic melanoma. Seven patients with metastatic BRAF-mutated melanoma received unlabeled vemurafenib 960 mg twice daily for 14 days. On the morning of day 15, patients received (14)C-labeled vemurafenib 960 mg (maximum 2.56 MBq [69.2 µCi]). Thereafter, patients resumed unlabeled vemurafenib (960 mg twice daily). Blood, urine, and feces were collected for metabolism, pharmacokinetic, and dose recovery analysis. Within 18 days after dose, ∽95% of (14)C-vemurafenib-related material was recovered from feces (94.1%) and urine (<1%). The parent compound was the predominant component (95%) in plasma. The mean plasma elimination half-life of (14)C-vemurafenib-related material was 71.1 h. Each metabolite accounted for <0.5% and ≤6% of the total administered dose in urine and feces, respectively (0-96 h postdose). No new metabolites were detected. Vemurafenib was well-tolerated. Excretion of vemurafenib via bile into feces is considered the predominant elimination route from plasma with minor renal elimination (<1%). e00113.

20.
J Clin Pharmacol ; 54(4): 368-74, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24374975

RESUMO

Vemurafenib is an orally bioavailable BRAF inhibitor approved for the treatment of BRAF(V600) -mutant metastatic melanoma. It is important to understand the effects of a high-fat meal on the pharmacokinetics (PK) of vemurafenib in humans because it is a Biopharmaceutics Classification System Class IV drug and its PK can be altered by food. An open-label, multicenter, randomized, 2-period crossover study was performed to evaluate the effect of food (high-fat meal) on the PK of a single oral dose of vemurafenib. Secondary objectives were safety and tolerability, efficacy with best overall response rate, and overall survival during the treatment period. The concomitant intake of food (high-fat meal) increased mean Cmax 3.5 to 7.5 µg/mL and mean AUC0-∞ 119 to 360 µg·h/mL after a single 960 mg dose of vemurafenib (N = 13-15 patients). An effect of food on single-dose exposure is suggested by point estimates and 90% CI of geometric mean ratios for vemurafenib plasma AUC0-∞ (4.7) and Cmax (2.5). Toxicity and response rate of vemurafenib in this study were consistent with prior experience in patients with BRAF(V600) -mutant metastatic melanoma. A high-fat meal increased the exposure to vemurafenib without altering the mean terminal half-life.


Assuntos
Antineoplásicos/farmacocinética , Gorduras na Dieta/farmacocinética , Interações Alimento-Droga , Indóis/farmacocinética , Melanoma/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Sulfonamidas/farmacocinética , Adulto , Idoso , Antineoplásicos/efeitos adversos , Antineoplásicos/sangue , Área Sob a Curva , Estudos Cross-Over , Feminino , Humanos , Indóis/efeitos adversos , Indóis/sangue , Masculino , Melanoma/tratamento farmacológico , Melanoma/genética , Pessoa de Meia-Idade , Mutação , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/sangue , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Sulfonamidas/efeitos adversos , Sulfonamidas/sangue , Vemurafenib
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...