Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(36): 19925-19931, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37642382

RESUMO

We report the development and characterization of a library of Ir(III) photocatalysts capable of undergoing spin-forbidden excitation (SFE) under orange light irradiation (595 nm). These catalysts were successfully applied to the construction of synthetically valuable C(sp2)-C(sp3) bonds inaccessible with existing methods of low-energy light-driven dual nickel/photoredox catalysis, demonstrating the synthetic utility of this photocatalyst family. The photocatalysts are capable of accessing both oxidatively and reductively activated coupling partners, illustrated through deaminative arylation and potassium alkyl trifluoroborate cross-coupling reactions with aryl halides. We demonstrate diverse substrate scopes of both cross-coupling paradigms under mild conditions in the first example of low-energy light-driven C(sp2)-C(sp3) metallaphotoredox coupling.

2.
J Org Chem ; 88(1): 384-394, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36516991

RESUMO

The development of a convergent route to the NLRP3 (nucleotide-binding domain and leucine-rich repeat-containing protein 3) agonist BMS-986299 is reported. The synthesis relies on a key Miyaura borylation and a tandem Suzuki-Miyaura coupling between an iodoimidazole and an o-aminochloroarene, followed by acid-mediated cyclization to afford the aminoquinoline core. The subsequent Boc cleavage and regioselective acylation afford the target compound. Two routes to the iodoimidazole intermediate are presented, along with the synthesis of the o-aminochloroarene via Negishi coupling. The convergent six-step route leads to an 80% reduction in process mass intensity compared to the linear enabling synthesis.


Assuntos
Imidazóis , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ciclização , Acilação
3.
J Am Chem Soc ; 144(49): 22409-22415, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36417474

RESUMO

Aryl amination is an essential transformation for medicinal, process, and materials chemistry. In addition to classic Buchwald-Hartwig amination conditions, blue-light-driven metallaphotoredox catalysis has emerged as a valuable tool for C-N cross-coupling. However, blue light suffers from low penetration through reaction media, limiting its scalability for industrial purposes. In addition, blue light enhances unwanted side-product formation in metallaphotoredox catalysis, namely hydrodehalogenation. Low-energy light, such as deep red (DR) or near-infrared (NIR), offers a solution to this problem as it can provide enhanced penetration through reaction media as compared to higher-energy wavelengths. Herein, we show that low-energy light can also enhance the desired reactivity in metallaphotoredox catalysis by suppressing unwanted hydrodehalogenation. We hypothesize that the reduced side product is formed by direct photolysis of the aryl-nickel bond by the high-energy light, leading to the generation of aryl radicals. Using deep-red or near-infrared light and an osmium photocatalyst, we demonstrate an enhanced scope of (hetero)aryl bromides and amine-based nucleophiles with minimal formation of hydrodehalogenation byproducts.


Assuntos
Luz , Níquel , Catálise , Aminação , Níquel/química , Brometos/química
4.
ACS Catal ; 12(2): 1150-1160, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36386561

RESUMO

A highly efficient and enantioselective asymmetric hydrogenation catalyzed by Ru-DTBM-segphos is reported for a broad range of pyridine-pyrroline tri-substituted alkenes. Kinetic, spectroscopic, and computational studies suggest that addition of H2 is rate-determining and that alkene insertion is the enantio-determining step. These studies also reveal an intriguing Ru-catalyzed H/D exchange process that is facilitated by the substrate at room temperature and low pressure where hydrogenation activity is suppressed. These studies lead to a mechanistic proposal that further defines the roles of hydrogen gas, Ru-H species, and protic solvents in this catalytic system.

5.
ACS Catal ; 12(10): 5961-5969, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37727697

RESUMO

The mechanism of asymmetric hydrogenation of 2-pyridyl alkenes catalyzed by chiral Rh-phosphine complexes at ambient temperature is examined using kinetic, spectroscopic, and computational tools. The reaction proceeds with reversible substrate binding followed by rate-determining addition of hydrogen. Substrate binding occurs only through the pyridine nitrogen in contrast to other substrate classes exhibiting stronger substrate direction. The lack of influence of hydrogen pressure on the product enantiomeric excess suggests that a pre-equilibrium in substrate binding is maintained across the pressure range investigated. An off-cycle Rh-hydride species is implicated in the mild catalyst deactivation observed. In contrast to Ru-phosphine-catalyzed reactions of the same substrate class, the stereochemical outcome in this system correlates generally with the relative stability of the E and Z rotamers of the substrate.

6.
J Org Chem ; 86(15): 10380-10396, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34255510

RESUMO

As sp2-sp3 disconnections gain acceptance in the medicinal chemist's toolbox, an increasing number of potential drug candidates containing this motif are moving into the pharmaceutical development pipeline. This raises a new set of questions and challenges around the novel, direct methodologies available for forging these bonds. These questions gain further importance in the context of process chemistry, where the focus is the development of scalable processes that enable the large-scale delivery of clinical supplies. In this paper, we describe our efforts to apply a wide variety of standard, photo-, and electrochemical sp2-sp3 cross-coupling methods to a pharmaceutically relevant intermediate and optimize each through a combination of high throughput and mechanistically guided experimentation. With data regarding the performance, benefits, and limitations of these novel methods, we evaluate them against a more traditional two-step palladium-catalyzed process. This work reveals trends and similarities between these sp2-sp3 bond-forming methods and suggests a path forward for further refinements.


Assuntos
Benchmarking , Preparações Farmacêuticas , Catálise , Paládio
7.
ACS Cent Sci ; 6(11): 2053-2059, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33274281

RESUMO

Over the past decade, chemists have embraced visible-light photoredox catalysis due to its remarkable ability to activate small molecules. Broadly, these methods employ metal complexes or organic dyes to convert visible light into chemical energy. Unfortunately, the excitation of widely utilized Ru and Ir chromophores is energetically wasteful as ∼25% of light energy is lost thermally before being quenched productively. Hence, photoredox methodologies require high-energy, intense light to accommodate said catalytic inefficiency. Herein, we report photocatalysts which cleanly convert near-infrared (NIR) and deep red (DR) light into chemical energy with minimal energetic waste. We leverage the strong spin-orbit coupling (SOC) of Os(II) photosensitizers to directly access the excited triplet state (T1) with NIR or DR irradiation from the ground state singlet (S0). Through strategic catalyst design, we access a wide range of photoredox, photopolymerization, and metallaphotoredox reactions which usually require 15-50% higher excitation energy. Finally, we demonstrate superior light penetration and scalability of NIR photoredox catalysis through a mole-scale arene trifluoromethylation in a batch reactor.

8.
J Am Chem Soc ; 142(23): 10477-10484, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32379433

RESUMO

The palladium-catalyzed, α-selective hydroarylation of acrylates and acrylamides is reported. Under optimized conditions, this method is highly tolerant of a wide range of substrates including those with base sensitive functional groups and/or multiple enolizable carbonyl groups. A detailed mechanistic study was undertaken, and the high selectivity of this transformation was shown to be enabled by the formation of a [PdII(Ar)(H)] intermediate, which performs selective hydride insertion into the ß-position of α,ß-unsaturated carbonyl compounds.


Assuntos
Acrilamidas/química , Acrilatos/química , Hidrocarbonetos Aromáticos/síntese química , Cetonas/síntese química , Catálise , Halogenação , Hidrocarbonetos Aromáticos/química , Cetonas/química , Estrutura Molecular , Paládio/química , Estereoisomerismo
9.
J Am Chem Soc ; 140(32): 10363-10367, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30029574

RESUMO

An acetyl-protected aminoethyl phenyl thioether has been developed to promote C(sp3)-H activation. Significant ligand enhancement is demonstrated by the realization of the first Pd(II)-catalyzed olefination of C(sp3)-H bonds of free carboxylic acids without using an auxiliary. Subsequent lactonization of the olefinated product via 1,4 addition provided exclusively monoselectivity in the presence of multiple ß-C-H bonds. The product γ-lactone can be readily opened to give either the highly valuable ß-olefinated or γ-hydroxylated aliphatic acids. Considering the challenges in developing Heck couplings using alkyl halides, this reaction offers a useful alternative.


Assuntos
Ácidos Carboxílicos/química , Catálise , Ligantes , Estrutura Molecular
10.
Angew Chem Int Ed Engl ; 56(6): 1506-1509, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28052530

RESUMO

Herein we report acid-directed ß-C(sp3 )-H arylation of α-amino acids enabled by pyridine-type ligands. This reaction does not require the installation of an exogenous directing group, is scalable, and enables the preparation of Fmoc-protected unnatural amino acids in three steps. The pyridine-type ligands are crucial for the development of this new C(sp3 )-H arylation.


Assuntos
Aminoácidos/síntese química , Fluorenos/síntese química , Hidrocarbonetos Aromáticos/síntese química , Piridinas/química , Aminoácidos/química , Catálise , Fluorenos/química , Hidrocarbonetos Aromáticos/química , Ligantes , Paládio/química , Piridinas/síntese química
11.
Angew Chem Int Ed Engl ; 55(12): 4040-3, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26890705

RESUMO

Using nickel and photoredox catalysis, the direct functionalization of C(sp(3))-H bonds of N-aryl amines by acyl electrophiles is described. The method affords a diverse range of α-amino ketones at room temperature and is amenable to late-stage coupling of complex and biologically relevant groups. C(sp(3))-H activation occurs by photoredox-mediated oxidation to generate α-amino radicals which are intercepted by nickel in catalytic C(sp(3))-C coupling. The merger of these two modes of catalysis leverages nickel's unique properties in alkyl cross-coupling while avoiding limitations commonly associated with transition-metal-mediated C(sp(3))-H activation, including requirements for chelating directing groups and high reaction temperatures.


Assuntos
Níquel/química , Acilação , Catálise , Ligação de Hidrogênio , Oxirredução , Processos Fotoquímicos
12.
J Am Chem Soc ; 136(24): 8556-9, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24902624

RESUMO

In hydroformylation, phosphorus-based directing groups have been consistently successful at placing the aldehyde on the carbon proximal to the directing group. The design and synthesis of a novel catalytic directing group are reported that promotes aldehyde formation on the carbon distal relative to the directing functionality. This scaffolding ligand, which operates through a reversible covalent bond to the substrate, has been applied to the diastereoselective hydroformylation of homoallylic alcohols to afford δ-lactones selectively. Altering the distance between the alcohol and the olefin revealed that homoallylic alcohols gives the distal lactone with the highest levels of regioselectivity.


Assuntos
Aldeídos/síntese química , Compostos Organometálicos/química , Propanóis/química , Aldeídos/química , Catálise , Estrutura Molecular
14.
J Org Chem ; 76(18): 7590-6, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21842847

RESUMO

We have developed a ligand that reversibly binds to aniline substrates, allowing for the control of regioselectivity and enantioselectivity in hydroformylation. In this paper we address how the electronics of the aniline ring affect both the binding of the substrate to the ligand and the enantioselectivity in this reaction.


Assuntos
Compostos de Anilina/química , Formiatos/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Estereoisomerismo
15.
J Am Chem Soc ; 132(42): 14757-9, 2010 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-20882977

RESUMO

The synthesis of ß-amino-aldehydes has been achieved through enantioselective hydroformylation of PMP-protected allylic amines. The reaction is accomplished by using a scalemic scaffolding ligand that covalently and reversibly binds to the substrate. These ligands behave like chiral auxiliaries because they are covalently attached to the substrate during hydroformylation; however, similar to traditional asymmetric ligands, they can be used in catalytic quantities. The directed hydroformylation of disubstituted olefins occurs under mild conditions (35 °C and 50 psi CO/H(2)), and Z-olefins afford excellent enantioselectivities (up to 93% ee).


Assuntos
Formiatos/química , Catálise , Ligantes , Modelos Moleculares , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...