Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 87(11): 11E556, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910694

RESUMO

In this communication we propose a novel diagnostic technique, which uses the collection optics of the JET Motional Stark Effect (MSE) diagnostic, to perform polarimetry marking of observed MHD in high temperature plasma regimes. To introduce the technique, first we will present measurements of the coherence between MSE polarimeter, electron cyclotron emission, and Mirnov coil signals aiming to show the feasibility of the method. The next step consists of measuring the amplitude fluctuation of the raw MSE polarimeter signals, for each MSE channel, following carefully the MHD frequency on Mirnov coil data spectrograms. A variety of experimental examples in JET ITER-Like Wall (ILW) plasmas are presented, providing an adequate picture and interpretation for the MSE optics polarimeter technique.

2.
Phys Rev Lett ; 107(13): 135004, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-22026864

RESUMO

New transport experiments on JET indicate that ion stiffness mitigation in the core of a rotating plasma, as described by Mantica et al. [Phys. Rev. Lett. 102, 175002 (2009)] results from the combined effect of high rotational shear and low magnetic shear. The observations have important implications for the understanding of improved ion core confinement in advanced tokamak scenarios. Simulations using quasilinear fluid and gyrofluid models show features of stiffness mitigation, while nonlinear gyrokinetic simulations do not. The JET experiments indicate that advanced tokamak scenarios in future devices will require sufficient rotational shear and the capability of q profile manipulation.

3.
Phys Rev Lett ; 96(9): 095002, 2006 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-16606270

RESUMO

The first electron temperature modulation experiments in plasmas characterized by strong and long-lasting electron and ion internal transport barriers (ITB) have been performed in JET using ion cyclotron resonance heating in mode conversion scheme. The ITB is shown to be a well localized narrow layer with low heat diffusivity, characterized by subcritical transport and loss of stiffness. In addition, results from cold pulse propagation experiments suggest a second order transition process for ITB formation.

4.
Phys Rev Lett ; 96(4): 045004, 2006 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-16486837

RESUMO

During fully noninductively driven discharges in the Tore Supra tokamak, large spontaneous oscillations of the core electron temperature (DeltaTe/Te>50%) have been observed for the first time. They occurred during the standard O regime, which is itself characterized by periodic oscillations of much smaller amplitude. The "giant" oscillations appear to involve distinct mechanisms with respect to the O regime and provide a spectacular example of the complex nonlinear interactions between energy confinement, noninductive current sources, and MHD that may occur in a tokamak plasma during steady-state operation.

5.
Phys Rev Lett ; 88(14): 145004, 2002 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-11955156

RESUMO

Quasistationary operation has been achieved on the Joint European Torus tokamak in internal-transport-barrier (ITB) scenarios, with the discharge time limited only by plant constraints. Full current drive was obtained over all the high performance phase by using lower hybrid current drive. For the first time feedback control on the total pressure and on the electron temperature profile was implemented by using, respectively, the neutral beams and the ion-cyclotron waves. Although impurity accumulation could be a problem in steady state ITBs, these experiments bring some elements to answer to it.

6.
Phys Rev Lett ; 87(11): 115001, 2001 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-11531529

RESUMO

Simultaneous current ramping and application of lower hybrid heating and current drive (LHCD) have produced a region with zero current density within measurement errors in the core ( r/a< or =0.2) of JET tokamak optimized shear discharges. The reduction of core current density is consistent with a simple physical explanation and numerical simulations of radial current diffusion including the effects of LHCD. However, the core current density is clamped at zero, indicating the existence of a physical mechanism which prevents it from becoming negative.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...