Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Protein Eng Des Sel ; 352022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35417013

RESUMO

mNeonGreen, an engineered green fluorescent protein (GFP) derived from lancelet, is one of the most brightly fluorescent homologs of Aequorea victoria jellyfish GFP (avGFP) yet reported. In this work, we investigated whether this bright fluorescence might be retained in homologs of mNeonGreen with modified chromophore structures and altered fluorescent hues. We found mNeonGreen to be generally less tolerant than avGFP to chromophore modification by substitution of the key chromophore-forming tyrosine residue with other aromatic amino acids. However, we were ultimately successful in creating a variant, designated as NeonCyan1, with a tryptophan-derived cyan fluorescent protein (CFP)-type chromophore, and two additional mutants with distinct spectral hues. Structural, computational, and photophysical characterization of NeonCyan1 and its variants provided insight into the factors that control the fluorescence emission color. Though not recommended as replacements for contemporary CFP variants, we demonstrate that NeonCyan1 variants are potentially suitable for live cell imaging applications.


Assuntos
Proteínas de Fluorescência Verde , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas Luminescentes/química , Espectrometria de Fluorescência/métodos
2.
J Phys Chem A ; 123(5): 1030-1043, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30633524

RESUMO

Pnictogen (or pnicogen) bonding is an attractive interaction between the electrophilic region of group 15 elements (N, P, As, Sb, Bi) and a nucleophile. This interaction for which unique applications in catalysis have recently been uncovered continues to gain popularity. Here, we investigate a series of pnictogen-bonded cocrystals based on SbF3 and SbCl3, prepared via mechanochemical ball milling, with 121/123Sb ( I = 5/2 and 7/2, respectively) nuclear quadrupole resonance (NQR) spectroscopy. Observed NQR frequency shifts upon cocrystallization are on the order of 0.1 to 10 MHz and are clearly diagnostic of the formation of pnictogen bonds to antimony. Further evidence for pnictogen bonding is obtained by complementary 13C cross-polarization magic-angle spinning solid-state NMR experiments. DFT calculations of NMR parameters as well as natural localized molecular orbital analyses support the experimental findings and elucidate the electronic origins of the experimental NQR frequency shifts. This work provides insights into the changes in the antimony quadrupolar coupling constant upon pnictogen bonding: strikingly, the decreases noted here parallel those known for hydrogen bonds, but contrast with the increases reported for halogen bonds. The utility of the observed antimony nuclear quadrupolar coupling constants in constraining structural models of cocrystals for which diffraction-based structures are unavailable, i.e., a rudimentary implementation of NQR crystallography, is established. Overall, this work offers a new approach to understand emerging classes of electrophilic interactions and to contextualize them in the broader landscape of established chemical bonding paradigms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA