Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(9): e0137916, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26383250

RESUMO

BEX3 (Brain Expressed X-linked protein 3) is a member of a mammal-specific placental protein family. Several studies have found the BEX proteins to be associated with neurodegeneration, the cell cycle and cancer. BEX3 has been predicted to be intrinsically disordered and also to represent an intracellular hub for cell signaling. The pro-apoptotic activity of BEX3 in association with a number of additional proteins has been widely supported; however, to the best of our knowledge, very limited data are available on the conformation of any of the members of the BEX family. In this study, we structurally characterized BEX3 using biophysical experimental data. Small angle X-ray scattering and atomic force microscopy revealed that BEX3 forms a specific higher-order oligomer that is consistent with a globular molecule. Solution nuclear magnetic resonance, partial proteinase K digestion, circular dichroism spectroscopy, and fluorescence techniques that were performed on the recombinant protein indicated that the structure of BEX3 is composed of approximately 31% α-helix and 20% ß-strand, contains partially folded regions near the N- and C-termini, and a core which is proteolysis-resistant around residues 55-120. The self-oligomerization of BEX3 has been previously reported in cell culture and is consistent with our in vitro data.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Microscopia de Força Atômica , Conformação Proteica
2.
J Biol Chem ; 290(33): 20527-40, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26149686

RESUMO

Cerebral dopamine neurotrophic factor (CDNF) is a promising therapeutic agent for Parkinson disease. As such, there has been great interest in studying its mode of action, which remains unknown. The three-dimensional crystal structure of the N terminus (residues 9-107) of CDNF has been determined, but there have been no published structural studies on the full-length protein due to proteolysis of its C-terminal domain, which is considered intrinsically disordered. An improved purification protocol enabled us to obtain active full-length CDNF and to determine its three-dimensional structure in solution. CDNF contains two well folded domains (residues 10-100 and 111-157) that are linked by a loop of intermediate flexibility. We identified two surface patches on the N-terminal domain that were characterized by increased conformational dynamics that should allow them to embrace active sites. One of these patches is formed by residues Ser-33, Leu-34, Ala-66, Lys-68, Ile-69, Leu-70, Ser-71, and Glu-72. The other includes a flexibly disordered N-terminal tail (residues 1-9), followed by the N-terminal portion of α-helix 1 (residues Cys-11, Glu-12, Val-13, Lys-15, and Glu-16) and residue Glu-88. The surface of the C-terminal domain contains two conserved active sites, which have previously been identified in mesencephalic astrocyte-derived neurotrophic factor, a CDNF paralog, which corresponds to its intracellular mode of action. We also showed that CDNF was able to protect dopaminergic neurons against injury caused by α-synuclein oligomers. This advises its use against physiological damages caused by α-synuclein oligomers, as observed in Parkinson disease and several other neurodegenerative diseases.


Assuntos
Biopolímeros/metabolismo , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/fisiologia , Fármacos Neuroprotetores , alfa-Sinucleína/metabolismo , Animais , Linhagem Celular , Cristalografia por Raios X , Humanos , Camundongos , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...