Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38006148

RESUMO

Water, alcohols, diols, and glycerol are low-cost blowing agents that can be used to create the desired silicone foam structures. Although their combined use can be beneficial, it remains unclear how it affects the physical properties of the resulting materials. We conducted a comparative study of these hydroxyl-bearing blowing agents in fumed silica- and mica-filled polymer composite systems for simultaneous blowing and crosslinking to obtain a low-density, uniform porosity and superior mechanical properties. The foams were optimized for a uniform open-pore structure with densities ranging from 75 to 150 kg‧m-3. Varying the diol chain length (Cn) from one to seven carbons can alter the foam density and structure, thereby enhancing the foam tensile strength while maintaining a low density. Replacing 10 mol% of water with 1,4-butanediol decreased the density by 26%, while increasing the specific strength by 5%. By combining glycerol and water blowing, the resulting foams exhibited a 30% lower apparent density than their water-blown analogs. The results further showed that Cn > 4 alkane chain diols had an odd-even effect on the apparent density and cell wall thickness. All foamable compositions had viscosities of approximately 7000 cSt and curing times below 2 min, allowing for quick dispensing and sufficient time for the foam to cure in semi-industrial volumes.

2.
Sci Rep ; 13(1): 8541, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237045

RESUMO

Silicone is often used in environments where water repellency is an advantage. Contact with water promotes the adhesion of microorganisms and biofilm formation. Depending on the application, this may increase the possibility of food poisoning and infections, the material's degrading appearance, and the likelihood of manufacturing defects. The prevention of microbial adhesion and biofilm formation is also essential for silicone-based elastomeric foams, which are used in direct contact with human bodies but are often difficult to clean. In this study, the microbial attachment in and the retention from the pores of silicone foams of different compositions is described and compared to those of commonly used polyurethane foams. The growth of the gram-negative Escherichia coli in the pores and their leaching during wash cycles is characterised by bacterial growth/inhibition, adhesion assay, and SEM imaging. The structural and surface properties of the materials are compared. Despite using common antibacterial additives, we have found that non-soluble particles stay isolated in the silicone elastomer layer, thus affecting surface microroughness. Water-soluble tannic acid dissolves into the medium and seems to aid in inhibiting planktonic bacterial growth, with a clear indication of the availability of tannic acid on the surfaces of SIFs.


Assuntos
Aderência Bacteriana , Escherichia coli , Humanos , Elastômeros de Silicone , Antibacterianos/farmacologia , Água , Biofilmes
3.
Sci Rep ; 12(1): 21589, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517538

RESUMO

Soft and compliant ionic electromechanically active polymer actuators (IEAPs) are a promising class of smart materials for biomedical and soft robotics applications. These materials change their shape in response to external stimuli like the electrical signal. This shape-change results solely from the ion flux inside the composite and hence the material can be miniaturized below the centimeter and millimeter levels-something that still poses a challenge for many other conventional actuation mechanisms in soft robotics (e.g., pneumatic, hydraulic, or tendon-based systems). However, the components used to prepare IEAPs are typically not safe for the biological environment, nor is the environment safe for the actuator. Safety concerns and unreliable operation in foreign liquid environments have been some of the main obstacles for the widespread adoption of IEAPs in many areas, e.g., in biomedical applications. Here we show a novel approach to fully encapsulate IEAP actuators with the biocompatible block copolymer SIBS (poly(styrene-block-isobutylene-block-styrene)) dissolved in block-selective solvents. Reduction in the bending amplitude due to the added passive layers, a common negative side-effect of encapsulating IEAPs, was not observed in this work. In conclusion, the encapsulated actuator is steered through a tortuous vasculature mock-up filled with a viscous buffer solution mimicking biological fluids.


Assuntos
Robótica , Materiais Inteligentes , Polímeros , Solventes , Íons , Estirenos
4.
Artigo em Inglês | MEDLINE | ID: mdl-32509743

RESUMO

Mass transfer from one part of an organism to another constitutes a fundamental non-muscular movement strategy in living organisms, in particular in plants. The demonstrable simplicity and safety make non-muscular actuators especially attractive for distributed configurations such as in wearable robotic applications on a textile platform. However, practical arrangements for integrating actuators as inherent parts of textiles is an ongoing challenge. Here we demonstrate an electrohydrodynamic ionic actuator that combines two textiles of natural origin. The first textile - viscose-rayon-derived activated carbon cloth - consists of high-surface-area monolithic fibers that provide electrical and mechanical integrity, whereas the other textile - silk - contributes to mechanical integrity in the lateral direction while preventing the conductive textiles from contacting. By injecting an electronic charge into the activated carbon cloth electrodes, the migration of the electrolyte ions is initiated in the porous network in-between the electrodes, causing non-uniform swelling and eventually bending of the laminate. The three-layer laminate composed of integral textile fibers demonstrated a ∼0.8% strain difference. Electrical control over a fluid movement in a textile platform provides a scalable method for functional textiles not limited to actuation.

5.
J Vis Exp ; (158)2020 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-32391818

RESUMO

Ionic electromechanically active capacitive laminates are a type of smart material that move in response to electrical stimulation. Due to the soft, compliant and biomimetic nature of this deformation, actuators made of the laminate have received increasing interest in soft robotics and (bio)medical applications. However, methods to easily fabricate the active material in large (even industrial) quantities and with a high batch-to-batch and within-batch repeatability are needed to transfer the knowledge from laboratory to industry. This protocol describes a simple, industrially scalable and reproducible method for the fabrication of ionic carbon-based electromechanically active capacitive laminates and the preparation of actuators made thereof. The inclusion of a passive and chemically inert (insoluble) middle layer (e.g., a textile-reinforced polymer network or microporous Teflon) distinguishes the method from others. The protocol is divided into five steps: membrane preparation, electrode preparation, current collector attachment, cutting and shaping, and actuation. Following the protocol results in an active material that can, for example, compliantly grasp and hold a randomly shaped object as demonstrated in the article.


Assuntos
Biomimética , Carvão Vegetal/química , Eletrodos , Polímeros/química , Robótica , Condutividade Elétrica , Íons
6.
Front Robot AI ; 6: 140, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33501155

RESUMO

Non-destructive handling of soft biological samples at the cellular level is becoming increasingly relevant in life sciences. In particular, spatially dense arrangements of soft manipulators with the capability of in situ monitoring via optical and electron microscopes promises new and exciting experimental techniques. The currently available manipulation technologies offer high positioning accuracy, yet these devices significantly grow in complexity in achieving compliance. We explore soft and compliant actuator material with a mechanical response similar to gel-like samples for perspective miniaturized manipulators. First, we demonstrate three techniques for rendering the bulk sheet-like electroactive material, the ionic and capacitive laminate (ICL), into a practical manipulator. We then show that these manipulators are also highly compatible with electron optics. Finally, we explore the performance of an ICL manipulator in handling a single large cell. Intrinsic compliance, miniature size, simple current-driven actuation, and negligible interference with the imaging technologies suggest a considerable perspective for the ICL in spatially dense arrays of compliant manipulators for microscopy.

7.
Sci Rep ; 4: 6913, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25372857

RESUMO

A large-scale effort was carried out to test the performance of seven types of ionic electroactive polymer (IEAP) actuators in space-hazardous environmental factors in laboratory conditions. The results substantiate that the IEAP materials are tolerant to long-term freezing and vacuum environments as well as ionizing Gamma-, X-ray, and UV radiation at the levels corresponding to low Earth orbit (LEO) conditions. The main aim of this material behaviour investigation is to understand and predict device service time for prolonged exposure to space environment.


Assuntos
Órgãos Artificiais , Eletrólitos/química , Polímeros/química , Simulação de Ambiente Espacial/instrumentação , Radiação Cósmica , Planeta Terra , Técnicas Eletroquímicas , Eletrólitos/efeitos da radiação , Desenho de Equipamento , Análise de Falha de Equipamento , Meio Ambiente Extraterreno , Congelamento , Raios gama , Humanos , Teste de Materiais , Músculos/fisiologia , Polímeros/efeitos da radiação , Voo Espacial , Raios Ultravioleta , Raios X
8.
Phys Chem Chem Phys ; 15(24): 9605-14, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23673406

RESUMO

The electromechanically and mechano-electrically active three-layered laminate composed of a Nafion membrane, carbide-derived carbon-based electrodes, and a 1-ethyl-3-methylimidazolium trifluoromethanesulphonate ionic liquid electrolyte responds to humidity gradient and can therefore serve as a differential humidity sensor or an energy harvesting element. The hydrophilic nature of all constituents of the laminate promotes sorption and diffusion of water across the membrane, causing large volumetric effects. Diffusion of water and the formation of a hydration shell around the ionic groups reorient and dislocate the ionic liquid ions, which in turn induce the formation of an electric charge across the electrodes exposed to different levels of ambient humidity. The generated electric charge can be registered as a voltage or electric current between the electrodes. Furthermore, the supercapacitor-like properties of the laminate allow storage of the electric charge in the same laminate, where it was generated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...