Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Hematol ; 125-126: 6-15, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37543237

RESUMO

Hematopoietic stem cells (HSCs) are the most primitive cell type in the hematopoietic hierarchy, which are responsible for sustaining the lifelong production of mature blood and immune cells. Due to their superior long-term regenerative capacity, HSC therapies such as stem cell transplantation have been used in a broad range of hematologic disorders. However, the rarity of this population in vivo considerably limits its clinical applications and large-scale analyses such as screening and safety studies. Therefore, ex vivo culture methods that allow long-term expansion and maintenance of functional HSCs are instrumental in overcoming the difficulties in studying HSC biology and improving HSC therapies. In this perspective, we discuss recent advances and technical considerations for three ex vivo HSC expansion methods including 1) polyvinyl alcohol-based HSC expansion, 2) mesenchymal stromal cell-HSC co-culture, and 3) two-/three-dimensional hydrogel HSC culture. This review summarizes the presentations and discussions from the 2022 International Society for Experimental Hematology (ISEH) Annual Meeting New Investigator Technology Session.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Mesenquimais , Células-Tronco Hematopoéticas/metabolismo , Transplante de Células-Tronco Hematopoéticas/métodos , Técnicas de Cocultura , Diferenciação Celular
2.
Exp Hematol ; 121: 6-11, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36764598

RESUMO

Immunologic memory is a feature typically ascribed to the adaptive arm of the immune system. However, recent studies have demonstrated that hematopoietic stem cells (HSCs) and innate immune cells such as monocytes and macrophages can gain epigenetic signatures to enhance their response in the context of reinfection. This suggests the presence of long-term memory, a phenomenon referred to as trained immunity. Trained immunity in HSCs can occur via changes in the epigenetic landscape and enhanced chromatin accessibility in lineage-specific genes, as well as through metabolic alterations. These changes can lead to a skewing in lineage bias, particularly enhanced myelopoiesis and the generation of epigenetically modified innate immune cells that provide better protection against pathogens on secondary infection. Here, we summarize recent advancements in trained immunity and epigenetic memory formation in HSCs and self-renewing alveolar macrophages, which was the focus of the Spring 2022 International Society for Experimental Hematology (ISEH) webinar.


Assuntos
Imunidade Inata , Imunidade Treinada , Imunidade Inata/genética , Memória Epigenética , Macrófagos , Memória Imunológica/genética
3.
EMBO J ; 41(8): e109463, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35229328

RESUMO

In order to support bone marrow regeneration after myeloablation, hematopoietic stem cells (HSCs) actively divide to provide both stem and progenitor cells. However, the mechanisms regulating HSC function and cell fate choice during hematopoietic recovery remain unclear. We herein provide novel insights into HSC regulation during regeneration by focusing on mitochondrial metabolism and ATP citrate lyase (ACLY). After 5-fluorouracil-induced myeloablation, HSCs highly expressing endothelial protein C receptor (EPCRhigh ) were enriched within the stem cell fraction at the expense of more proliferative EPCRLow HSCs. These EPCRHigh HSCs were initially more primitive than EPCRLow HSCs and enabled stem cell expansion by enhancing histone acetylation, due to increased activity of ACLY in the early phase of hematopoietic regeneration. In the late phase of recovery, HSCs enhanced differentiation potential by increasing the accessibility of cis-regulatory elements in progenitor cell-related genes, such as CD48. In conditions of reduced mitochondrial metabolism and ACLY activity, these HSCs maintained stem cell phenotypes, while ACLY-dependent histone acetylation promoted differentiation into CD48+ progenitor cells. Collectively, these results indicate that the dynamic control of ACLY-dependent metabolism and epigenetic alterations is essential for HSC regulation during hematopoietic regeneration.


Assuntos
ATP Citrato (pro-S)-Liase , Medula Óssea , ATP Citrato (pro-S)-Liase/genética , ATP Citrato (pro-S)-Liase/metabolismo , Receptor de Proteína C Endotelial/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Histonas/metabolismo
4.
Front Immunol ; 11: 585367, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329562

RESUMO

Lifelong blood production is maintained by bone marrow (BM)-residing hematopoietic stem cells (HSCs) that are defined by two special properties: multipotency and self-renewal. Since dysregulation of either may lead to a differentiation block or extensive proliferation causing dysplasia or neoplasia, the genomic integrity and cellular function of HSCs must be tightly controlled and preserved by cell-intrinsic programs and cell-extrinsic environmental factors of the BM. The BM had been long regarded an immune-privileged organ shielded from immune insults and inflammation, and was thereby assumed to provide HSCs and immune cells with a protective environment to ensure blood and immune homeostasis. Recently, accumulating evidence suggests that hemato-immune challenges such as autoimmunity, inflammation or infection elicit a broad spectrum of immunological reactions in the BM, and in turn, influence the function of HSCs and BM environmental cells. Moreover, in analogy with the emerging concept of "trained immunity", certain infection-associated stimuli are able to train HSCs and progenitors to produce mature immune cells with enhanced responsiveness to subsequent challenges, and in some cases, form an inflammatory or infectious memory in HSCs themselves. In this review, we will introduce recent findings on HSC and hematopoietic regulation upon exposure to various hemato-immune stimuli and discuss how these challenges can elicit either beneficial or detrimental outcomes on HSCs and the hemato-immune system, as well as their relevance to aging and hematologic malignancies.


Assuntos
Medula Óssea/imunologia , Microambiente Celular/imunologia , Células-Tronco Hematopoéticas/imunologia , Memória Imunológica/imunologia , Inflamação/imunologia , Envelhecimento/imunologia , Envelhecimento/patologia , Animais , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/patologia , Humanos
5.
J Vis Exp ; (142)2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30596387

RESUMO

Erythroid cell commitment and differentiation proceed through activation of a lineage-restricted transcriptional network orchestrated by a group of cell fate determining and maturing factors. We previously set out to define the minimal set of factors necessary for instructing red blood cell development using direct lineage reprogramming of fibroblasts into induced erythroid progenitors/precursors (iEPs). We showed that overexpression of Gata1, Tal1, Lmo2, and c-Myc (GTLM) can rapidly convert murine and human fibroblasts directly to iEPs that resemble bona fide erythroid cells in terms of morphology, phenotype, and gene expression. We intend that iEPs will provide an invaluable tool to study erythropoiesis and cell fate regulation. Here we describe the stepwise process of converting murine tail tip fibroblasts into iEPs via transcription factor-driven direct lineage reprogramming (DLR). In this example, we perform the reprogramming in fibroblasts from erythroid lineage-tracing mice that express the yellow fluorescent protein (YFP) under the control of the erythropoietin receptor gene (EpoR) promoter, enabling visualization of erythroid cell fate induction upon reprogramming. Following this protocol, fibroblasts can be reprogrammed into iEPs within five to eight days. While improvements can still be made to the process, we show that GTLM-mediated reprogramming is a rapid and direct process, yielding cells with properties of bona fide erythroid progenitor and precursor cells.


Assuntos
Células Precursoras Eritroides/fisiologia , Eritropoese/fisiologia , Fibroblastos/fisiologia , Regulação da Expressão Gênica , Engenharia Genética , Receptores da Eritropoetina/metabolismo , Animais , Diferenciação Celular/genética , Linhagem da Célula , Eritropoese/genética , Redes Reguladoras de Genes , Humanos , Camundongos , Regiões Promotoras Genéticas , Receptores da Eritropoetina/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...