Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 115(12): 126804, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26431005

RESUMO

We use an on-chip superconducting resonator as a sensitive meter to probe the properties of graphene double quantum dots at microwave frequencies. Specifically, we investigate the charge dephasing rates in a circuit quantum electrodynamics architecture. The dephasing rates strongly depend on the number of charges in the dots, and the variation has a period of four charges, over an extended range of charge numbers. Although the exact mechanism of this fourfold periodicity in dephasing rates is an open problem, our observations hint at the fourfold degeneracy expected in graphene from its spin and valley degrees of freedom.

2.
Nano Lett ; 15(10): 6620-5, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26327140

RESUMO

We fabricated a hybrid device with two distant graphene double quantum dots (DQDs) and a microwave resonator. A nonlinear response is observed in the resonator reflection amplitude when the two DQDs are jointly tuned to the vicinity of the degeneracy points. This observation can be well fitted by the Tavis-Cummings (T-C) model which describes two two-level systems coupling with one photonic field. Furthermore, the correlation between the DC currents in the two DQDs is studied. A nonzero cross-current correlation is observed which has been theoretically predicted to be an important sign of nonlocal coupling between two distant systems. Our results explore T-C physics in electronic transport and also contribute to the study of nonlocal transport and future implementations of remote electronic entanglement.

3.
Phys Rev Lett ; 114(9): 093602, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25793814

RESUMO

We investigate the nonlinear interaction between a squeezed cavity mode and a mechanical mode in an optomechanical system (OMS) that allows us to selectively obtain either a radiation-pressure coupling or a parametric-amplification process. The squeezing of the cavity mode can enhance the interaction strength into the single-photon strong-coupling regime, even when the OMS is originally in the weak-coupling regime. Moreover, the noise of the squeezed mode can be suppressed completely by introducing a broadband-squeezed vacuum environment that is phase matched with the parametric amplification that squeezes the cavity mode. This proposal offers an alternative approach to control the OMS using a squeezed cavity mode, which should allow single-photon quantum processes to be implemented with currently available optomechanical technology. Potential applications range from engineering single-photon sources to nonclassical phonon states.

4.
Artigo em Inglês | MEDLINE | ID: mdl-25679739

RESUMO

We present a sparse matrix permutation from graph theory that gives stable incomplete lower-upper preconditioners necessary for iterative solutions to the steady-state density matrix for quantum optomechanical systems. This reordering is efficient, adding little overhead to the computation, and results in a marked reduction in both memory and runtime requirements compared to other solution methods, with performance gains increasing with system size. Either of these benchmarks can be tuned via the preconditioner accuracy and solution tolerance. This reordering optimizes the condition number of the approximate inverse and is the only method found to be stable at large Hilbert space dimensions. This allows for steady-state solutions to otherwise intractable quantum optomechanical systems.

5.
Nature ; 479(7373): 376-9, 2011 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-22094697

RESUMO

One of the most surprising predictions of modern quantum theory is that the vacuum of space is not empty. In fact, quantum theory predicts that it teems with virtual particles flitting in and out of existence. Although initially a curiosity, it was quickly realized that these vacuum fluctuations had measurable consequences--for instance, producing the Lamb shift of atomic spectra and modifying the magnetic moment of the electron. This type of renormalization due to vacuum fluctuations is now central to our understanding of nature. However, these effects provide indirect evidence for the existence of vacuum fluctuations. From early on, it was discussed whether it might be possible to more directly observe the virtual particles that compose the quantum vacuum. Forty years ago, it was suggested that a mirror undergoing relativistic motion could convert virtual photons into directly observable real photons. The phenomenon, later termed the dynamical Casimir effect, has not been demonstrated previously. Here we observe the dynamical Casimir effect in a superconducting circuit consisting of a coplanar transmission line with a tunable electrical length. The rate of change of the electrical length can be made very fast (a substantial fraction of the speed of light) by modulating the inductance of a superconducting quantum interference device at high frequencies (>10 gigahertz). In addition to observing the creation of real photons, we detect two-mode squeezing in the emitted radiation, which is a signature of the quantum character of the generation process.

6.
Phys Rev Lett ; 103(14): 147003, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19905595

RESUMO

We investigate the dynamical Casimir effect in a coplanar waveguide (CPW) terminated by a superconducting quantum interference device (SQUID). Changing the magnetic flux through the SQUID parametrically modulates the boundary condition of the CPW, and thereby, its effective length. Effective boundary velocities comparable to the speed of light in the CPW result in broadband photon generation which is identical to the one calculated in the dynamical Casimir effect for a single oscillating mirror. We estimate the power of the radiation for realistic parameters and show that it is experimentally feasible to directly detect this nonclassical broadband radiation.

7.
Phys Rev Lett ; 100(11): 113601, 2008 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-18517785

RESUMO

We propose an approach to coherently transfer populations between selected quantum states in one- and two-qubit systems by using controllable Stark-chirped rapid adiabatic passages. These evolution-time insensitive transfers, assisted by easily implementable single-qubit phase-shift operations, could serve as elementary logic gates for quantum computing. Specifically, this proposal could be conveniently demonstrated with existing Josephson phase qubits. Our proposal can find an immediate application in the readout of these qubits. Indeed, the broken parity symmetries of the bound states in these artificial atoms provide an efficient approach to design the required adiabatic pulses.

8.
Phys Rev Lett ; 97(7): 077001, 2006 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-17026265

RESUMO

The two-level systems (TLSs) naturally occurring in Josephson junctions constitute a major obstacle for the operation of superconducting phase qubits. Since these TLSs can possess remarkably long decoherence times, we show that such TLSs can themselves be used as qubits, allowing for a well controlled initialization, universal sets of quantum gates, and readout. Thus, a single current-biased Josephson junction can be considered as a multiqubit register. It can be coupled to other junctions to allow the application of quantum gates to an arbitrary pair of qubits in the system. Our results indicate an alternative way to realize superconducting quantum information processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA