Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Comput Biol Med ; 174: 108364, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599067

RESUMO

Eye movement analysis is critical to studying human brain phenomena such as perception, cognition, and behavior. However, under uncontrolled real-world settings, the recorded gaze coordinates (commonly used to track eye movements) are typically noisy and make it difficult to track change in the state of each phenomenon precisely, primarily because the expected change is usually a slower transient process. This paper proposes an approach, Improved Naive Segmented linear regression (INSLR), which approximates the gaze coordinates with a piecewise linear function (PLF) referred to as a hypothesis. INSLR improves the existing NSLR approach by employing a hypotheses clustering algorithm, which redefines the final hypothesis estimation in two steps: (1) At each time-stamp, measure the likelihood of each hypothesis in the candidate list of hypotheses by using the least square fit score and its distance from the k-means of the hypotheses in the list. (2) Filter hypothesis based on a pre-defined threshold. We demonstrate the significance of the INSLR method in addressing the challenges of uncontrolled real-world settings such as gaze denoising and minimizing gaze prediction errors from cost-effective devices like webcams. Experiment results show INSLR consistently outperforms the baseline NSLR in denoising noisy signals from three eye movement datasets and minimizes the error in gaze prediction from a low precision device for 71.1% samples. Furthermore, this improvement in denoising quality is further validated by the improved accuracy of the oculomotor event classifier called NSLR-HMM and enhanced sensitivity in detecting variations in attention induced by distractor during online lecture.


Assuntos
Movimentos Oculares , Humanos , Movimentos Oculares/fisiologia , Modelos Lineares , Algoritmos , Tecnologia de Rastreamento Ocular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA