Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(8): 9765-9781, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38434900

RESUMO

Copper-cystine-based high aspect ratio structures (CuHARS) possess exceptional physical and chemical properties and exhibit remarkable biodegradability in human physiological conditions. Extensive testing has confirmed the biocompatibility and biodegradability of CuHARS under diverse biological conditions, making them a viable source of essential Cu2+. These ions are vital for catalyzing the production of nitric oxide (NO) from the decomposition of S-nitrosothiols (RSNOs) found in human blood. The ability of CuHARS to act as a Cu2+ donor under specific concentrations has been demonstrated in this study, resulting in the generation of elevated levels of NO. Consequently, this dual function makes CuHARS effective as both a bactericidal agent and a promoter of angiogenesis. In vitro experiments have shown that CuHARS actively promotes the migration and formation of complete lumens by redirecting microvascular endothelial cells. To maximize the benefits of CuHARS, they have been incorporated into biomimetic electrospun poly(ε-caprolactone)/gelatin nanofiber aerogels. Through the regulated release of Cu2+ and NO production, these channeled aerogels not only provide antibacterial support but also promote angiogenesis. Taken together, the inclusion of CuHARS in biomimetic scaffolds could hold great promise in revolutionizing tissue regeneration and wound healing.

2.
J Mater Chem B ; 12(11): 2818-2830, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38411556

RESUMO

Personalized bone-regenerative materials have attracted substantial interest in recent years. Modern clinical settings demand the use of engineered materials incorporating patient-derived cells, cytokines, antibodies, and biomarkers to enhance the process of regeneration. In this work, we formulated short microfiber-reinforced hydrogels with platelet-rich fibrin (PRF) to engineer implantable multi-material core-shell bone grafts. By employing 3D bioprinting technology, we fabricated a core-shell bone graft from a hybrid composite hydroxyapatite-coated poly(lactic acid) (PLA) fiber-reinforced methacryolyl gelatin (GelMA)/alginate hydrogel. The overall concept involves 3D bioprinting of long bone mimic microstructures that resemble a core-shell cancellous-cortical structure, with a stiffer shell and a softer core with our engineered biomaterial. We observed a significantly enhanced stiffness in the hydrogel scaffold incorporated with hydroxyapatite (HA)-coated PLA microfibers compared to the pristine hydrogel construct. Furthermore, HA non-coated PLA microfibers were mixed with PRF and GelMA/alginate hydrogel to introduce a slow release of growth factors which can further enhance cell maturation and differentiation. These patient-specific bone grafts deliver cytokines and growth factors with distinct spatiotemporal release profiles to enhance tissue regeneration. The biocompatible and bio-responsive bone mimetic core-shell multi-material structures enhance osteogenesis and can be customized to have materials at a specific location, geometry, and material combination.


Assuntos
Hidrogéis , Osteogênese , Humanos , Hidrogéis/química , Durapatita , Gelatina/química , Alginatos/química , Citocinas , Poliésteres
3.
Nat Commun ; 15(1): 1080, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316777

RESUMO

The structure and design flexibility of aerogels make them promising for soft tissue engineering, though they tend to come with brittleness and low elasticity. While increasing crosslinking density may improve mechanics, it also imparts brittleness. In soft tissue engineering, resilience against mechanical loads from mobile tissues is paramount. We report a hybrid aerogel that consists of self-reinforcing networks of micro- and nanofibers. Nanofiber segments physically entangle microfiber pillars, allowing efficient stress distribution through the intertwined fiber networks. We show that optimized hybrid aerogels have high specific tensile moduli (~1961.3 MPa cm3 g-1) and fracture energies (~7448.8 J m-2), while exhibiting super-elastic properties with rapid shape recovery (~1.8 s). We demonstrate that these aerogels induce rapid tissue ingrowth, extracellular matrix deposition, and neovascularization after subcutaneous implants in rats. Furthermore, we can apply them for engineering soft tissues via minimally invasive procedures, and hybrid aerogels can extend their versatility to become magnetically responsive or electrically conductive, enabling pressure sensing and actuation.


Assuntos
Nanofibras , Resiliência Psicológica , Ratos , Animais , Nanofibras/química , Elasticidade , Engenharia Tecidual/métodos
4.
Adv Mater ; 36(16): e2307328, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38288789

RESUMO

Chronic wounds resulting from diabetes, pressure, radiation therapy, and other factors continue to pose significant challenges in wound healing. To address this, this study introduces a novel hybrid fibroin fibrous scaffold (FFS) comprising randomly arranged fibroin fibers and vertically aligned cryogel fibers (CFs). The fibroin scaffold is efficiently degummed at room temperature and simultaneously formed a porous structure. The aligned CFs are produced via directional freeze-drying, achieved by controlling solution concentration and freezing polymerization temperature. The incorporation of aligned CFs into the expanded fibroin fiber scaffold leads to enhanced cell infiltration both in vitro and in vivo, further elevating the hybrid scaffold's tissue compatibility. The anti-inflammatory peptide 1 (AP-1) is also conjugated to the hybrid fibrous scaffold, effectively transforming the inflammatory status of chronic wounds from pro-inflammatory to pro-reparative. Consequently, the FFS-AP1+CF group demonstrates superior granulation tissue formation, angiogenesis, collagen deposition, and re-epithelialization during the proliferative phase compared to the commercial product PELNAC. Moreover, the FFS-AP1+CF group displays epidermis thickness, number of regenerated hair follicles, and collagen density closer to normal skin tissue. These findings highlight the potential of random fibroin fibers/aligned CFs hybrid fibrous scaffold as a promising approach for skin tissue filling and tissue regeneration.


Assuntos
Fibroínas , Fibroínas/química , Criogéis , Cicatrização , Colágeno , Alicerces Teciduais/química , Anti-Inflamatórios , Seda
5.
Trends Biotechnol ; 42(5): 631-647, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38158307

RESUMO

Electrospinning technology has garnered wide attention over the past few decades in various biomedical applications including drug delivery, cell therapy, and tissue engineering. This technology can create nanofibers with tunable fiber diameters and functionalities. However, the 2D membrane nature of the nanofibers, as well as the rigidity and low porosity of electrospun fibers, lower their efficacy in tissue repair and regeneration. Recently, new avenues have been explored to resolve the challenges associated with 2D electrospun nanofiber membranes. This review discusses recent trends in creating different electrospun nanofiber microstructures from 2D nanofiber membranes by using various post-processing methods, as well as their biotechnological applications.


Assuntos
Biotecnologia , Nanofibras , Engenharia Tecidual , Nanofibras/química , Biotecnologia/métodos , Engenharia Tecidual/métodos , Sistemas de Liberação de Medicamentos , Humanos , Materiais Biocompatíveis/química , Alicerces Teciduais/química
6.
Mil Med Res ; 10(1): 16, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36978167

RESUMO

Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering (TE) and regenerative medicine. In contrast to conventional biomaterials or synthetic materials, biomimetic scaffolds based on natural biomaterial can offer cells a broad spectrum of biochemical and biophysical cues that mimic the in vivo extracellular matrix (ECM). Additionally, such materials have mechanical adaptability, microstructure interconnectivity, and inherent bioactivity, making them ideal for the design of living implants for specific applications in TE and regenerative medicine. This paper provides an overview for recent progress of biomimetic natural biomaterials (BNBMs), including advances in their preparation, functionality, potential applications and future challenges. We highlight recent advances in the fabrication of BNBMs and outline general strategies for functionalizing and tailoring the BNBMs with various biological and physicochemical characteristics of native ECM. Moreover, we offer an overview of recent key advances in the functionalization and applications of versatile BNBMs for TE applications. Finally, we conclude by offering our perspective on open challenges and future developments in this rapidly-evolving field.


Assuntos
Materiais Biocompatíveis , Materiais Biomiméticos , Humanos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Materiais Biocompatíveis/química , Engenharia Tecidual , Medicina Regenerativa , Biomimética , Materiais Biomiméticos/farmacologia , Materiais Biomiméticos/uso terapêutico , Materiais Biomiméticos/química
7.
Adv Funct Mater ; 33(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36714167

RESUMO

Fast healing of diabetic wounds remains a major clinical challenge. Herein, this work reports a strategy to combine nanofiber aerogels containing precision macrochannels and the LL-37-mimic peptide W379 for rapid diabetic wound healing. Nanofiber aerogels consisting of poly(glycolide-co-lactide) (PGLA 90:10)/gelatin and poly-p-dioxanone (PDO)/gelatin short electrospun fiber segments were prepared by partially anisotropic freeze-drying, crosslinking, and sacrificial templating with three-dimensional (3D)-printed meshes, exhibiting nanofibrous architecture and precision micro-/macrochannels. Like human cathelicidin LL-37, W379 peptide at a concentration of 3 µg/mL enhanced the migration and proliferation of keratinocytes and dermal fibroblasts in a cell scratch assay and a proliferation assay. In vivo studies show that nanofiber aerogels with precision macrochannels can greatly promote cell penetration compared to aerogels without macrochannels. Relative to control and aerogels with and without macrochannels, adding W379 peptides to aerogels with precision macrochannels shows the best efficacy in healing diabetic wounds in mice in terms of cell infiltration, neovascularization, and re-epithelialization. The fast re-epithelization could be due to upregulation of phospho-extracellular signal-regulated kinase (p38 MAPK) after treatment with W379. Together, the approach developed in this work could be promising for the treatment of diabetic wounds and other chronic wounds.

8.
Biomater Sci ; 11(3): 949-963, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36537259

RESUMO

Hemorrhage is the leading cause of death following battlefield injuries. Although several hemostats are commercially available, they do not meet all the necessary requirements to stop bleeding in combat injuries. Here, we engineer thermoresponsive shear-thinning hydrogels (T-STH) composed of a thermoresponsive polymer, poly(N-isopropyl acrylamide) (p(NIPAM)), and hemostatic silicate nanodisks, LAPONITE®, as minimally invasive injectable hemostatic agents. Our T-STH is a physiologically stable hydrogel that can be easily injected through a syringe and needle and exhibits rapid mechanical recovery. Additionally, it demonstrates temperature-dependent blood coagulation owing to the phase transition of p(NIPAM). It decreases in vitro blood clotting times over 50% at physiological temperatures compared to room temperature. Furthermore, it significantly prevents blood loss in an ex vivo bleeding model at different blood flow rates (1 mL min-1 and 5 mL min-1) by forming a wound plug. More importantly, our T-STH is comparable to a commercially available hemostat, Floseal, in terms of blood loss and blood clotting time in an in vivo rat liver bleeding model. Furthermore, once the hemorrhage is stabilized, our T-STH can be easily removed using a cold saline wash without any rebleeding or leaving any residues. Taken together, our T-STH can be used as a first aid hemostat to treat external hemorrhages in emergency situations.


Assuntos
Hemostáticos , Hidrogéis , Ratos , Animais , Hidrogéis/química , Hemorragia , Coagulação Sanguínea , Hemostáticos/uso terapêutico , Polímeros
9.
Adv Mater ; 35(5): e2207335, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36444871

RESUMO

Drawing inspiration for biomaterials from biological systems has led to many biomedical innovations. One notable bioinspired device, Velcro, consists of two substrates with interlocking ability. Generating reversibly interlocking biomaterials is an area of investigation, as such devices can allow for modular tissue engineering, reversibly interlocking biomaterial interfaces, or friction-based coupling devices. Here, a biaxially interlocking interface generated using electrostatic flocking is reported. Two electrostatically flocked substrates are mechanically and reversibly interlocked with the ability to resist shearing and compression forces. An initial high-throughput screen of polyamide flock fibers with varying diameters and fiber lengths is conducted to elucidate the roles of different fiber parameters on scaffold mechanical properties. After determining the most desirable parameters via weight scoring, polylactic acid (PLA) fibers are used to emulate the ideal scaffold for in vitro use. PLA flocked scaffolds are populated with osteoblasts and interlocked. Interlocked flocked scaffolds improved cell survivorship under mechanical compression and sustained cell viability and proliferation. Additionally, the compression and shearing resistance of cell-seeded interlocking interfaces increased with increasing extracellular matrix deposition. The introduction of extracellular matrix-reinforced interlocking interfaces may serve as binders for modular tissue engineering, act as scaffolds for engineering tissue interfaces, or enable friction-based couplers for biomedical applications.


Assuntos
Materiais Biocompatíveis , Alicerces Teciduais , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Engenharia Tecidual , Poliésteres/química , Matriz Extracelular/química
10.
Bioact Mater ; 20: 137-163, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35663339

RESUMO

Natural bone constitutes a complex and organized structure of organic and inorganic components with limited ability to regenerate and restore injured tissues, especially in large bone defects. To improve the reconstruction of the damaged bones, tissue engineering has been introduced as a promising alternative approach to the conventional therapeutic methods including surgical interventions using allograft and autograft implants. Bioengineered composite scaffolds consisting of multifunctional biomaterials in combination with the cells and bioactive therapeutic agents have great promise for bone repair and regeneration. Cellulose and its derivatives are renewable and biodegradable natural polymers that have shown promising potential in bone tissue engineering applications. Cellulose-based scaffolds possess numerous advantages attributed to their excellent properties of non-toxicity, biocompatibility, biodegradability, availability through renewable resources, and the low cost of preparation and processing. Furthermore, cellulose and its derivatives have been extensively used for delivering growth factors and antibiotics directly to the site of the impaired bone tissue to promote tissue repair. This review focuses on the various classifications of cellulose-based composite scaffolds utilized in localized bone drug delivery systems and bone regeneration, including cellulose-organic composites, cellulose-inorganic composites, cellulose-organic/inorganic composites. We will also highlight the physicochemical, mechanical, and biological properties of the different cellulose-based scaffolds for bone tissue engineering applications.

11.
Adv Healthc Mater ; 11(20): e2200849, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35930707

RESUMO

Exosomes show great potential in diagnostic and therapeutic applications. Inspired by the human innate immune defense, herein, we report engineered exosomes derived from monocytic cells treated with immunomodulating compounds 1α,25-dihydroxyvitamin D3, and CYP24A1 inhibitor VID400 which are slowly released from electrospun nanofiber matrices. These engineered exosomes contain significantly more cathelicidin/LL-37 when compared with exosomes derived from either untreated cells or Cathelicidin Human Tagged ORF Clone transfected cells. In addition, such exosomes exhibit multiple biological functions evidenced by killing bacteria, facilitating human umbilical vein endothelial cell tube formation, and enhancing skin cell proliferation and migration. Taken together, the engineered exosomes developed in this study can be used as therapeutics alone or in combination with other biomaterials for effective infection management, wound healing, and tissue regeneration.


Assuntos
Exossomos , Humanos , Vitamina D3 24-Hidroxilase , Peptídeos Catiônicos Antimicrobianos/farmacologia , Células Endoteliais da Veia Umbilical Humana , Materiais Biocompatíveis , Catelicidinas
12.
ChemNanoMat ; 8(7)2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35990019

RESUMO

Electrospun nanofibers show great potential in biomedical applications. This mini review article traces the recent advances in electrospun nanofibers for wound management via various approaches. Initially, we provide a short note on the four phases of wound healing, including hemostasis, inflammation, proliferation, and remodeling. Then, we state how the nanofiber dressings can stop bleeding and reduce the pain. Following that, we discuss the delivery of therapeutics and cells using different types of nanofibers for enhancing cell migration, angiogenesis, and re-epithelialization, resulting in the promotion of wound healing. Finally, we present the conclusions and future perspectives regarding the use of electrospun nanofibers for wound management.

13.
Acta Biomater ; 146: 211-221, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35513306

RESUMO

Accurate and rapid point-of-care tissue and microbiome sampling is critical for early detection of cancers and infectious diseases and often result in effective early intervention and prevention of disease spread. In particular, the low prevalence of Barrett's and gastric premalignancy in the Western world makes population-based endoscopic screening unfeasible and cost-ineffective. Herein, we report a method that may be useful for prescreening the general population in a minimally invasive way using a swallowable, re-expandable, ultra-absorbable, and retrievable nanofiber cuboid and sphere produced by electrospinning, gas-foaming, coating, and crosslinking. The water absorption capacity of the cuboid- and sphere-shaped nanofiber objects is shown ∼6000% and ∼2000% of their dry mass. In contrast, unexpanded semicircular and square nanofiber membranes showed <500% of their dry mass. Moreover, the swallowable sphere and cuboid were able to collect and release more bacteria, viruses, and cells/tissues from solutions as compared with unexpanded scaffolds. In addition to that, an expanded sphere shows higher cell collection capacity from the esophagus inner wall as compared with the unexpanded nanofiber membrane. Taken together, the nanofiber capsules developed in this study could provide a minimally invasive method of collecting biological samples from the duodenal, gastric, esophagus, and oropharyngeal sites, potentially leading to timely and accurate diagnosis of many diseases. STATEMENT OF SIGNIFICANCE: Recently, minimally invasive technologies have gained much attention in tissue engineering and disease diagnosis. In this study, we engineered a swallowable and retrievable electrospun nanofiber capsule serving as collection device to collect specimens from internal organs in a minimally invasive manner. The sample collection device could be an alternative endoscopy to collect the samples from internal organs like jejunum, stomach, esophagus, and oropharynx without any sedation. The newly engineered nanofiber capsule could be used to collect, bacteria, virus, fluids, and cells from the abovementioned internal organs. In addition, the biocompatible and biodegradable nanofiber capsule on a string could exhibit a great sample collection capacity for the primary screening of Barret Esophagus, acid reflux, SARS-COVID-19, Helicobacter pylori, and gastric cancer.


Assuntos
Esôfago de Barrett , COVID-19 , Nanofibras , Esôfago de Barrett/diagnóstico , Esôfago de Barrett/microbiologia , Esôfago de Barrett/patologia , Cápsulas , Humanos
14.
Mater Today Bio ; 12: 100166, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34901819

RESUMO

Electrostatic flocking is a textile technology that employs a Coulombic driving force to launch short fibers from a charging source towards an adhesive-covered substrate, resulting in a dense array of aligned fibers perpendicular to the substrate. However, electrostatic flocking of insulative polymeric fibers remains a challenge due to their insufficient charge accumulation. We report a facile method to flock electrostatically insulative poly(ε-caprolactone) (PCL) microfibers (MFs) and electrospun PCL nanofiber yarns (NFYs) by incorporating NaCl during pre-flock processing. Both MF and NFY were evaluated for flock functionality, mechanical properties, and biological responses. To demonstrate this platform's diverse applications, standalone flocked NFY and MF scaffolds were synthesized and evaluated as scaffold for cell growth. Employing the same methodology, scaffolds made from poly(glycolide-co-l-lactide) (PGLA) (90:10) MFs were evaluated for their wound healing capacity in a diabetic mouse model. Further, a flock-reinforced polydimethylsiloxane (PDMS) disc was fabricated to create an anisotropic artificial vertebral disc (AVD) replacement potentially used as a treatment for lumbar degenerative disc disease. Overall, a salt-based flocking method is described with MFs and NFYs, with wound healing and AVD repair applications presented.

15.
Adv Healthc Mater ; 10(19): e2100766, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34219401

RESUMO

Electrostatic flocking, a textile engineering technique, uses Coulombic driving forces to propel conductive microfibers toward an adhesive-coated substrate, leaving a forest of aligned fibers. Though an easy way to induce anisotropy along a surface, this technique is limited to microfibers capable of accumulating charge. This study reports a novel method, utilizing principles from the percolation theory to make electrically insulative polymeric microfibers flockable. A variety of well-mixed, conductive materials are added to multiple insulative and biodegradable polymer microfibers during wet spinning, which enables nearly all types of polymer microfibers to accumulate sufficient charges required for flocking. Biphasic, biodegradable scaffolds are fabricated by flocking silver nanoparticle (AgNP)-filled poly(ε-caprolactone) (PCL) microfibers onto substrates made from 3D printing, electrospinning, and thin-film casting. The incorporation of AgNP into PCL fibers and use of chitosan-based adhesive enables antimicrobial activity against methicillin-resistant Staphylococcus aureus. The fabricated scaffolds demonstrate both favorable in vitro cell response and new tissue formation after subcutaneous implantation in rats, as evident by newly formed blood vessels and infiltrated cells. This technology opens the door for using previously unflockable polymer microfibers as surface modifiers or standalone structures in various engineering fields.


Assuntos
Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Animais , Poliésteres , Polímeros , Ratos , Prata , Eletricidade Estática , Engenharia Tecidual , Alicerces Teciduais
16.
Sci Adv ; 7(31)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34321208

RESUMO

Biomaterials without exogenous cells or therapeutic agents often fail to achieve rapid endogenous bone regeneration with high quality. Here, we reported a class of three-dimensional (3D) nanofiber scaffolds with hierarchical structure and controlled alignment for effective endogenous cranial bone regeneration. 3D scaffolds consisting of radially aligned nanofibers guided and promoted the migration of bone marrow stem cells from the surrounding region to the center in vitro. These scaffolds showed the highest new bone volume, surface coverage, and mineral density among the tested groups in vivo. The regenerated bone exhibited a radially aligned fashion, closely recapitulating the scaffold's architecture. The organic phase in regenerated bone showed an aligned, layered, and densely packed structure, while the inorganic mineral phase showed a uniform distribution with smaller pore size and an even distribution of stress upon the simulated compression. We expect that this study will inspire the design of next-generation biomaterials for effective endogenous bone regeneration with desired quality.

17.
Adv Healthc Mater ; 10(12): e2100238, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34029004

RESUMO

A new approach is described for fabricating 3D poly(ε-caprolactone) (PCL)/gelatin (1:1) nanofiber aerogels with patterned macrochannels and anisotropic microchannels by freeze-casting with 3D-printed sacrificial templates. Single layer or multiple layers of macrochannels are formed through an inverse replica of 3D-printed templates. Aligned microchannels formed by partially anisotropic freezing act as interconnected pores between templated macrochannels. The resulting macro-/microchannels within nanofiber aerogels significantly increase preosteoblast infiltration in vitro. The conjugation of vascular endothelial growth factor (VEGF)-mimicking QK peptide to PCL/gelatin/gelatin methacryloyl (1:0.5:0.5) nanofiber aerogels with patterned macrochannels promotes the formation of a microvascular network of seeded human microvascular endothelial cells. Moreover, nanofiber aerogels with patterned macrochannels and anisotropic microchannels show significantly enhanced cellular infiltration rates and host tissue integration compared to aerogels without macrochannels following subcutaneous implantation in rats. Taken together, this novel class of nanofiber aerogels holds great potential in biomedical applications including tissue repair and regeneration, wound healing, and 3D tissue/disease modeling.


Assuntos
Nanofibras , Animais , Células Endoteliais , Congelamento , Humanos , Poliésteres , Impressão Tridimensional , Ratos , Engenharia Tecidual , Alicerces Teciduais , Fator A de Crescimento do Endotélio Vascular
18.
Nano Lett ; 21(3): 1508-1516, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33501831

RESUMO

Following the COVID-19 outbreak, swabs for biological specimen collection were thrust to the forefront of healthcare materials. Swab sample collection and recovery are vital for reducing false negative diagnostic tests, early detection of pathogens, and harvesting DNA from limited biological samples. In this study, we report a new class of nanofiber swabs tipped with hierarchical 3D nanofiber objects produced by expanding electrospun membranes with a solids-of-revolution-inspired gas foaming technique. Nanofiber swabs significantly improve absorption and release of proteins, cells, bacteria, DNA, and viruses from solutions and surfaces. Implementation of nanofiber swabs in SARS-CoV-2 detection reduces the false negative rates at two viral concentrations and identifies SARS-CoV-2 at a 10× lower viral concentration compared to flocked and cotton swabs. The nanofiber swabs show great promise in improving test sensitivity, potentially leading to timely and accurate diagnosis of many diseases.


Assuntos
Teste para COVID-19/instrumentação , COVID-19/diagnóstico , Nanofibras , SARS-CoV-2 , COVID-19/virologia , Teste para COVID-19/métodos , Teste para COVID-19/estatística & dados numéricos , Reações Falso-Negativas , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Nanofibras/ultraestrutura , Nanotecnologia , SARS-CoV-2/isolamento & purificação , Manejo de Espécimes/instrumentação , Manejo de Espécimes/métodos , Manejo de Espécimes/estatística & dados numéricos
19.
Appl Phys Rev ; 8(4): 041326, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35003482

RESUMO

Electrostatic flocking immobilizes electrical charges to the surface of microfibers from a high voltage-connected electrode and utilizes Coulombic forces to propel microfibers toward an adhesive-coated substrate, leaving a forest of aligned fibers. This traditional textile engineering technique has been used to modify surfaces or to create standalone anisotropic structures. Notably, a small body of evidence validating the use of electrostatic flocking for biomedical applications has emerged over the past several years. Noting the growing interest in utilizing electrostatic flocking in biomedical research, we aim to provide an overview of electrostatic flocking, including the principle, setups, and general and biomedical considerations, and propose a variety of biomedical applications. We begin with an introduction to the development and general applications of electrostatic flocking. Additionally, we introduce and review some of the flocking physics and mathematical considerations. We then discuss how to select, synthesize, and tune the main components (flocking fibers, adhesives, substrates) of electrostatic flocking for biomedical applications. After reviewing the considerations necessary for applying flocking toward biomedical research, we introduce a variety of proposed use cases including bone and skin tissue engineering, wound healing and wound management, and specimen swabbing. Finally, we presented the industrial comments followed by conclusions and future directions. We hope this review article inspires a broad audience of biomedical, material, and physics researchers to apply electrostatic flocking technology to solve a variety of biomedical and materials science problems.

20.
Adv Mater ; 32(43): e2003754, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32944991

RESUMO

New methods are described for converting 2D electrospun nanofiber membranes to 3D hierarchical assemblies with structural and compositional gradients. Pore-size gradients are generated by tuning the expansion of 2D membranes in different layers with incorporation of various amounts of a surfactant during the gas-foaming process. The gradient in fiber organizations is formed by expanding 2D nanofiber membranes composed of multiple regions collected by varying rotating speeds of mandrel. A compositional gradient on 3D assemblies consisting of radially aligned nanofibers is prepared by dripping, diffusion, and crosslinking. Bone mesenchymal stem cells (BMSCs) on the 3D nanofiber assemblies with smaller pore size show significantly higher expression of hypoxia-related markers and enhanced chondrogenic differentiation compared to BMSCs cultured on the assemblies with larger pore size. The basic fibroblast growth factor gradient can accelerate fibroblast migration from the surrounding area to the center in an in vitro wound healing model. Taken together, 3D nanofiber assemblies with gradients in pore sizes, fiber organizations, and contents of signaling molecules can be used to engineer tissue constructs for tissue repair and build biomimetic disease models for studying disease biology and screening drugs, in particular, for interface tissue engineering and modeling.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Membranas Artificiais , Nanofibras , Diferenciação Celular/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Difusão , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanofibras/química , Osteogênese/efeitos dos fármacos , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...