Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neural Eng ; 21(3)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38776894

RESUMO

Objective.Electrical stimulation of peripheral nerves has long been a treatment option to restore impaired neural functions that cannot be restored by conventional pharmacological therapies. Endovascular neurostimulation with stent-mounted electrode arrays is a promising and less invasive alternative to traditional implanted electrodes, which typically require invasive implantation surgery. In this study, we investigated the feasibility of endovascular stimulation of the femoral nerve using a stent-mounted electrode array and compared its performance to that of a commercially available pacing catheter.Approach.In acute animal experiments, a pacing catheter was implanted unilaterally in the femoral artery to stimulate the femoral nerve in a bipolar configuration. Electromyogram of the quadriceps and electroneurogram of a distal branch of the femoral nerve were recorded. After retrieval of the pacing catheter, a bipolar stent-mounted electrode array was implanted in the same artery and the recording sessions were repeated.Main Results.Stimulation of the femoral nerve was feasible with the stent-electrode array. Although the threshold stimulus intensities required with the stent-mounted electrode array (at 100-500µs increasing pulse width, 2.17 ± 0.87 mA-1.00 ± 0.11 mA) were more than two times higher than the pacing catheter electrodes (1.05 ± 0.48 mA-0.57 ± 0.28 mA), we demonstrated that, by reducing the stimulus pulse width to 100µs, the threshold charge per phase and charge density can be reduced to 0.22 ± 0.09µC and 24.62 ± 9.81µC cm-2, which were below the tissue-damaging limit, as defined by the Shannon criteria.Significance.The present study is the first to reportin vivofeasibility and efficiency of peripheral nerve stimulation using an endovascular stent-mounted electrode array.


Assuntos
Eletrodos Implantados , Estudos de Viabilidade , Nervo Femoral , Stents , Nervo Femoral/fisiologia , Animais , Procedimentos Endovasculares/instrumentação , Procedimentos Endovasculares/métodos , Estimulação Elétrica/métodos , Estimulação Elétrica/instrumentação , Masculino , Eletromiografia/métodos
2.
Sci Rep ; 14(1): 7212, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532013

RESUMO

The endovascular neural interface provides an appealing minimally invasive alternative to invasive brain electrodes for recording and stimulation. However, stents placed in blood vessels have long been known to affect blood flow (haemodynamics) and lead to neointimal growth within the blood vessel. Both the stent elements (struts and electrodes) and blood vessel wall geometries can affect the mechanical environment on the blood vessel wall, which could lead to unfavourable vascular remodelling after stent placement. With increasing applications of stents and stent-like neural interfaces in venous blood vessels in the brain, it is necessary to understand how stents affect blood flow and tissue growth in veins. We explored the haemodynamics of a stent-mounted neural interface in a blood vessel model. Results indicated that blood vessel deformation and tapering caused a substantial change to the lumen geometry and the haemodynamics. The neointimal proliferation was evaluated in sheep implanted with an endovascular neural interface. Analysis showed a negative correlation with the mean Wall Shear Stress pattern. The results presented here indicate that the optimal stent oversizing ratio must be considered to minimise the haemodynamic impact of stenting.


Assuntos
Hemodinâmica , Stents , Animais , Ovinos , Circulação Coronária/fisiologia , Neointima
3.
Artigo em Inglês | MEDLINE | ID: mdl-38082593

RESUMO

Wireless endovascular sensors and stimulators are emerging biomedical technologies for applications such as endovascular pressure monitoring, hyperthermia, and neural stimulations. Recently, coil-shaped stents have been proposed for inductive power transfer to endovascular devices using the stent as a receiver. However, less work has been done on the external transmitter components, so the maximum power transferable remains unknown. In this work, we design and evaluate a wearable transmitter coil that allows 50 mW power transfer in simulation.Clinical Relevance-This allows more accurate measurements and precise control of endovascular devices.


Assuntos
Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio , Fontes de Energia Elétrica , Simulação por Computador , Stents
4.
Artigo em Inglês | MEDLINE | ID: mdl-38082602

RESUMO

Low decoding accuracy makes brain-computer interface (BCI) control of a robotic arm difficult. Shared control (SC) can overcome limitations of a BCI by leveraging external sensor data and generating commands to assist the user. Our study explored whether reaching targets with a robot end-effector was easier using SC rather than direct control (DC). We simulated a motor imagery BCI using a joystick with noise introduced to explicitly control interface accuracy to be 65% or 79%. Compared to DC, our prediction-based implementation of SC led to a significant reduction in the trajectory length of successful reaches for 4 (3) out of 5 targets using the 65% (79%) accurate interface, with failure rates being equivalent to DC for 2 (1) out of 5 targets. Therefore, this implementation of SC is likely to improve reaching efficiency but at the cost of more failures. Additionally, the NASA Task Load Index results suggest SC reduced user workload.Clinical relevance-Shared control can minimise the impact of BCI decoder errors on robot motion, making robotic arm control using noninvasive BCIs more viable.


Assuntos
Interfaces Cérebro-Computador , Procedimentos Cirúrgicos Robóticos , Imagens, Psicoterapia , Movimento (Física) , Eletroencefalografia/métodos
5.
Artigo em Inglês | MEDLINE | ID: mdl-38082814

RESUMO

Hemodynamic changes in stented blood vessels play a critical role in stent-associated complications. The majority of work on the hemodynamics of stented blood vessels has focused on coronary arteries but not cerebral venous sinuses. With the emergence of endovascular electrophysiology, there is a growing interest in stenting cerebral blood vessels. We investigated the hemodynamic impact of a stent-mounted neural interface inside the cerebral venous sinus. The stent was virtually implanted into an idealized superior sagittal sinus (SSS) model. Local venous blood flow was simulated. Results showed that blood flow was altered by the stent, generating recirculation and low wall shear stress (WSS) around the device. However, the effect of the electrodes on blood flow was not prominent due to their small size. This is an early exploration of the hemodynamics of a stent-mounted neural interface. Future work will shed light on the key factors that influence blood flow and stenting outcomes.Clinical Relevance-The study investigates blood flow through a stent-based electrode array inside the cerebral venous sinus. The hemodynamic impact of the stent can provide insight into neointimal growth and thrombus formation.


Assuntos
Veias Cerebrais , Hidrodinâmica , Stents , Vasos Coronários , Hemodinâmica
6.
Artigo em Inglês | MEDLINE | ID: mdl-38083531

RESUMO

Brain-computer interfaces (BCI) have the potential to improve the quality of life for persons with paralysis. Sub-scalp EEG provides an alternative BCI signal acquisition method that compromises between the limitations of traditional EEG systems and the risks associated with intracranial electrodes, and has shown promise in long-term seizure monitoring. However, sub-scalp EEG has not yet been assessed for suitability in BCI applications. This study presents a preliminary comparison of visual evoked potentials (VEPs) recorded using sub-scalp and endovascular stent electrodes in a sheep. Sub-scalp electrodes recorded comparable VEP amplitude, signal-to-noise ratio and bandwidth to the stent electrodes.Clinical relevance-This is the first study to report a comparision between sub-scalp and stent electrode array signals. The use of sub-scalp EEG electrodes may aid in the long-term use of brain-computer interfaces.


Assuntos
Interfaces Cérebro-Computador , Couro Cabeludo , Animais , Ovinos , Couro Cabeludo/fisiologia , Potenciais Evocados Visuais , Qualidade de Vida , Eletroencefalografia/métodos , Eletrodos
7.
Artigo em Inglês | MEDLINE | ID: mdl-38083693

RESUMO

This work evaluates the feasibility of using a source level Brain-Computer Interface (BCI) for people with Multiple Sclerosis (MS). Data used was previously collected EEG of eight participants (one participant with MS and seven neurotypical participants) who performed imagined movement of the right and left hand. Equivalent current dipole cluster fitting was used to assess related brain activity at the source level and assessed using dipole location and power spectrum analysis. Dipole clusters were resolved within the motor cortices with some notable spatial difference between the MS and control participants. Neural sources that generate motor imagery originated from similar motor areas in the participant with MS compared to the neurotypical participants. Power spectral analysis indicated a reduced level of alpha power in the participant with MS during imagery tasks compared to neurotypical participants. Power in the beta band may be used to distinguish between left and right imagined movement for users with MS in BCI applications.Clinical Relevance- This paper demonstrates the cortical areas activated during imagined BCI-type tasks in a participant with Multiple Sclerosis (MS), and is a proof of concept for translating BCI research to potential users with MS.


Assuntos
Interfaces Cérebro-Computador , Esclerose Múltipla , Humanos , Eletroencefalografia , Estudos de Viabilidade , Imaginação
8.
Micromachines (Basel) ; 14(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37420955

RESUMO

Electrodes are used in vivo for chemical sensing, electrophysiological recording, and stimulation of tissue. The electrode configuration used in vivo is often optimised for a specific anatomy and biological or clinical outcomes, not electrochemical performance. Electrode materials and geometries are constrained by biostability and biocompatibility issues and may be required to function clinically for decades. We performed benchtop electrochemistry, with changes in reference electrode, smaller counter-electrode sizes, and three- or two-electrode configurations. We detail the effects different electrode configurations have on typical electroanalytical techniques used on implanted electrodes. Changes in reference electrode required correction by application of an offset potential. In a two-electrode configuration with similar working and reference/counter-electrode sizes, the electrochemical response was dictated by the rate-limiting charge transfer step at either electrode. This could invalidate calibration curves, standard analytical methods, and equations, and prevent use of commercial simulation software. We provide methods for determining if an electrode configuration is affecting the in vivo electrochemical response. We recommend sufficient details be provided in experimental sections on electronics, electrode configuration, and their calibration to justify results and discussion. In conclusion, the experimental limitations of performing in vivo electrochemistry may dictate what types of measurements and analyses are possible, such as obtaining relative rather than absolute measurements.

9.
J Neural Eng ; 20(3)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36595262

RESUMO

Objective.Endovascular neuromodulation has attracted substantial interest in recent years as a minimally invasive approach to treat neurological disorders. In this study, we investigated with a computational model the feasibility of stimulating peripheral nerves with an endovascular stent-mounted electrode array.Approach.Anatomically realistic FEM models were constructed for the pudendal and vagal neurovascular bundles. The electromagnetic fields generated from electrical stimuli were computed using Sim4Life NEURON models to predict dynamic axonal responses.Main results.The models predict that the stimulation thresholds of the endovascular stent-electrode array configurations tested are comparable to that of ring electrodes and are dependent on the inter-electrode distance and orientation of the device. Arranging multiple electrodes along the longitudinal axis of the nerve lowers surface charge density without sacrificing axon recruitment, whereas arranging electrodes along the circumference of the blood vessel reduces the risk of misalignment but lowers axon recruitment.Significance.Overall, this study predicts that the endovascular stent-electrode array is a feasible stimulation option for peripheral nerves, and the electrode array can be flexibly optimized to achieve the lowest stimulation threshold.


Assuntos
Axônios , Nervos Periféricos , Eletrodos , Axônios/fisiologia , Simulação por Computador , Nervos Periféricos/fisiologia , Stents , Estimulação Elétrica/métodos , Eletrodos Implantados
10.
J Neural Eng ; 19(5)2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36240737

RESUMO

Objective.The aim of this work was to assess vascular remodeling after the placement of an endovascular neural interface (ENI) in the superior sagittal sinus (SSS) of sheep. We also assessed the efficacy of neural recording using an ENI.Approach.The study used histological analysis to assess the composition of the foreign body response. Micro-CT images were analyzed to assess the profiles of the foreign body response and create a model of a blood vessel. Computational fluid dynamic modeling was performed on a reconstructed blood vessel to evaluate the blood flow within the vessel. Recording of brain activity in sheep was used to evaluate efficacy of neural recordings.Main results.Histological analysis showed accumulated extracellular matrix material in and around the implanted ENI. The extracellular matrix contained numerous macrophages, foreign body giant cells, and new vascular channels lined by endothelium. Image analysis of CT slices demonstrated an uneven narrowing of the SSS lumen proportional to the stent material within the blood vessel. However, the foreign body response did not occlude blood flow. The ENI was able to record epileptiform spiking activity with distinct spike morphologies.Significance. This is the first study to show high-resolution tissue profiles, the histological response to an implanted ENI and blood flow dynamic modeling based on blood vessels implanted with an ENI. The results from this study can be used to guide surgical planning and future ENI designs; stent oversizing parameters to blood vessel diameter should be considered to minimize detrimental vascular remodeling.


Assuntos
Procedimentos Endovasculares , Corpos Estranhos , Animais , Ovinos , Remodelação Vascular , Stents , Seio Sagital Superior
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 5686-5689, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892412

RESUMO

AIM: Brain-Computer Interfaces (BCIs) hold promise to provide people with partial or complete paralysis, the ability to control assistive technology. This study reports offline classification of imagined and executed movements of the upper and lower limb in one participant with multiple sclerosis and people with no limb function deficits. METHODS: We collected neural signals using electroencephalography (EEG) while participants performed executed and imagined motor tasks as directed by prompts shown on a screen. RESULTS: Participants with no limb function attained >70% decoding accuracy on their best-imagined task compared to rest and on at-least one task comparison. The participant with multiple sclerosis also achieved accuracies within the range of participants with no limb function loss.Clinical Relevance - While only one case study is provided it was promising that the participant with MS was able to achieve comparable classification to that of the seven healthy controls. Further studies are needed to assess whether people suffering from MS may be able to use a BCI to improve their quality of life.


Assuntos
Interfaces Cérebro-Computador , Esclerose Múltipla , Eletroencefalografia , Estudos de Viabilidade , Humanos , Qualidade de Vida
12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 5966-5969, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892477

RESUMO

Implantable neuromodulation devices that interface with the peripheral nervous system are a promising approach to restore functions lost to nerve damage. Existing nerve stimulation electrodes require direct contact with the target nerve and are associated with mechanical nerve damage and fibrous tissue encapsulation. Endovascularly delivered electrode arrays may provide a less invasive solution. Using a hybrid tissue conductor-neuron model and computational simulations, this study demonstrates the feasibility of delivering electrical stimulation of a peripheral nerve from a blood vessel in the vicinity of the target and predicts that the stimulation intensity required strongly depends on nerve-vessel distance and relative orientation, which are important factors to consider when screening candidate blood vessels for electrode implantation.


Assuntos
Tecido Nervoso , Nervos Periféricos , Simulação por Computador , Estimulação Elétrica , Eletrodos
13.
IEEE Open J Eng Med Biol ; 2: 74-83, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33997788

RESUMO

The pace of research and development in neuroscience, neurotechnology, and neurorehabilitation is rapidly accelerating, with the number of publications doubling every 4.2 years. Maintaining this progress requires technological standards and scientific reporting guidelines to provide frameworks for communication and interoperability. The present lack of such neurotechnology standards limits the transparency, repro-ducibility, and meta-analysis of this growing body of literature, posing an ongoing barrier to research, clinical, and commercial objectives. Continued neurotechnological innovation requires the development of some minimal standards to promote integration between this broad spectrum of technologies and therapies. To preserve design freedom and accelerate the translation of research into safe and effective technologies with maximal user benefit, such standards must be collaboratively co-developed by the full range of neuroscience and neurotechnology stakeholders. This paper summarizes the preliminary recommendations of IEEE P2794 Standards Working Group, developing a Reporting Standard for in-vivo Neural Interface Research (RSNIR).

14.
J Neural Eng ; 18(2)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33339011

RESUMO

Objective. The common spatial patterns (CSP) algorithm is an effective method to extract discriminatory features from electroencephalography (EEG) to be used by a brain-computer interface (BCI). However, informed selection of CSP filters typically requires oversight from a BCI expert to accept or reject filters based on the neurophysiological plausibility of their activation patterns. Our goal was to identify, analyze and automatically classify prototypical CSP patterns to enhance the prediction of motor imagery states in a BCI.Approach. A data-driven approach that used four publicly available EEG datasets was adopted. Cluster analysis revealed recurring, visually similar CSP patterns and a convolutional neural network was developed to distinguish between established CSP pattern classes. Furthermore, adaptive spatial filtering schemes that utilize the categorization of CSP patterns were proposed and evaluated.Main results. Classes of common neurophysiologically probable and improbable CSP patterns were established. Analysis of the relationship between these categories of CSP patterns and classification performance revealed discarding neurophysiologically improbable filters can decrease decoder performance. Further analysis revealed that the spatial orientation of EEG modulations can evolve over time, and that the features extracted from the original CSP filters can become inseparable. Importantly, it was shown through a novel adaptive CSP technique that adaptation in response to these emerging patterns can restore feature separability.Significance. These findings highlight the importance of considering and reporting on spatial filter activation patterns in both online and offline studies. They also emphasize to researchers in the field the importance of spatial filter adaptation in BCI decoder design, particularly for online studies with a focus on training users to develop stable and suitable brain patterns.


Assuntos
Interfaces Cérebro-Computador , Algoritmos , Eletroencefalografia/métodos , Imagens, Psicoterapia , Imaginação/fisiologia , Processamento de Sinais Assistido por Computador
15.
J Neurointerv Surg ; 13(2): 102-108, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33115813

RESUMO

BACKGROUND: Implantable brain-computer interfaces (BCIs), functioning as motor neuroprostheses, have the potential to restore voluntary motor impulses to control digital devices and improve functional independence in patients with severe paralysis due to brain, spinal cord, peripheral nerve or muscle dysfunction. However, reports to date have had limited clinical translation. METHODS: Two participants with amyotrophic lateral sclerosis (ALS) underwent implant in a single-arm, open-label, prospective, early feasibility study. Using a minimally invasive neurointervention procedure, a novel endovascular Stentrode BCI was implanted in the superior sagittal sinus adjacent to primary motor cortex. The participants undertook machine-learning-assisted training to use wirelessly transmitted electrocorticography signal associated with attempted movements to control multiple mouse-click actions, including zoom and left-click. Used in combination with an eye-tracker for cursor navigation, participants achieved Windows 10 operating system control to conduct instrumental activities of daily living (IADL) tasks. RESULTS: Unsupervised home use commenced from day 86 onwards for participant 1, and day 71 for participant 2. Participant 1 achieved a typing task average click selection accuracy of 92.63% (100.00%, 87.50%-100.00%) (trial mean (median, Q1-Q3)) at a rate of 13.81 (13.44, 10.96-16.09) correct characters per minute (CCPM) with predictive text disabled. Participant 2 achieved an average click selection accuracy of 93.18% (100.00%, 88.19%-100.00%) at 20.10 (17.73, 12.27-26.50) CCPM. Completion of IADL tasks including text messaging, online shopping and managing finances independently was demonstrated in both participants. CONCLUSION: We describe the first-in-human experience of a minimally invasive, fully implanted, wireless, ambulatory motor neuroprosthesis using an endovascular stent-electrode array to transmit electrocorticography signals from the motor cortex for multiple command control of digital devices in two participants with flaccid upper limb paralysis.


Assuntos
Atividades Cotidianas , Interfaces Cérebro-Computador , Neuroestimuladores Implantáveis , Córtex Motor/fisiologia , Paralisia/terapia , Índice de Gravidade de Doença , Atividades Cotidianas/psicologia , Idoso , Interfaces Cérebro-Computador/psicologia , Estudos de Viabilidade , Feminino , Humanos , Imageamento Tridimensional/métodos , Masculino , Pessoa de Meia-Idade , Córtex Motor/diagnóstico por imagem , Paralisia/diagnóstico por imagem , Paralisia/fisiopatologia , Estudos Prospectivos
16.
Expert Rev Med Devices ; 16(10): 841-843, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31568731
17.
IEEE Trans Biomed Eng ; 66(3): 675-681, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30004867

RESUMO

OBJECTIVE: Neural prostheses are improving the quality of life for those suffering from neurological impairments. Electrocorticography electrodes located in subdural, epidural, and intravascular positions show promise as long-term neural prostheses. However, chronic implantation affects the electrochemical environments of these arrays. METHODS: In the present work, the effect of electrode location on the electrochemical properties of the interface was compared. The impedances of the electrode arrays were measured using electrochemical impedance spectroscopy in vitro in saline and in vivo four-week postimplantation. RESULTS: There was not a significant effect of electrode location (subdural, intravascular, or epidural) on the impedance magnitude, and the effect of the electrode size on the impedance magnitude was frequency dependent. There was a frequency-dependent statistically significant effect of electrode location and electrode size on the phase angles of the three arrays. The subdural and epidural arrays showed phase shifts closer to -90° indicating the capacitive nature of the interface in these locations. The impact of placing electrodes within a blood vessel and adjacent to the blood vessel wall was most obvious when looking at the phase responses at frequencies below 10 kHz. CONCLUSION: Our results show that intravascular electrodes, like those in subdural and epidural positions, show electrical properties that are suitable for recording. These results provide support for the use of intravascular arrays in clinically relevant neural prostheses and diagnostic devices. SIGNIFICANCE: Comparison of electrochemical impedance of the epidural, intravascular, and subdural electrode array showed that all three locations are possible placement options, since impedances are in comparable ranges.


Assuntos
Espectroscopia Dielétrica/métodos , Impedância Elétrica , Próteses Neurais , Animais , Encéfalo/irrigação sanguínea , Encéfalo/fisiologia , Procedimentos Endovasculares , Espaço Epidural/fisiologia , Ovinos
18.
Sci Rep ; 8(1): 17469, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30478430

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 1074-1077, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30440577

RESUMO

Access to the brain to implant recording electrodes has conventionally required a craniotomy. To mitigate risks of open brain surgery, we previously developed a stent-electrode array that can be delivered to the cortex via cerebral vessels. Following implantation of a stent-electrode array (Stentrode) in a large animal model, we investigated the longevity of highquality signals, by measuring bandwidth in animals implanted for up to six months; no signal degradation was observed. We also investigated whether bandwidth was influenced by implant location with respect to the superior sagittal sinus and branching cortical veins; it was not. Finally, we assessed whether electrode orientation had an impact on recording quality. There was no significant difference in bandwidths from electrodes facing different orientations. Interestingly, electrodes facing the skull (180°) were still able to record neural information with high fidelity. Consequently, a minimally invasive surgical approach combined with a stent-electrode array is a safe and efficacious technique to acquire neural signals over a chronic duration.


Assuntos
Córtex Cerebral , Stents , Animais , Encéfalo , Eletrodos Implantados
20.
Sci Rep ; 8(1): 15556, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30349004

RESUMO

Invasive Brain-Computer Interfaces (BCIs) require surgeries with high health-risks. The risk-to-benefit ratio of the procedure could potentially be improved by pre-surgically identifying the ideal locations for mental strategy classification. We recorded high-spatiotemporal resolution blood-oxygenation-level-dependent (BOLD) signals using functional MRI at 7 Tesla in eleven healthy participants during two motor imagery tasks. BCI diagnostic task isolated the intent to imagine movements, while BCI simulation task simulated the neural states that may be yielded in a real-life BCI-operation scenario. Imagination of movements were classified from the BOLD signals in sub-regions of activation within a single or multiple dorsal motor network regions. Then, the participant's decoding performance during the BCI simulation task was predicted from the BCI diagnostic task. The results revealed that drawing information from multiple regions compared to a single region increased the classification accuracy of imagined movements. Importantly, systematic unimodal and multimodal classification revealed the ideal combination of regions that yielded the best classification accuracy at the individual-level. Lastly, a given participant's decoding performance achieved during the BCI simulation task could be predicted from the BCI diagnostic task. These results show the feasibility of 7T-fMRI with unimodal and multimodal classification being utilized for identifying ideal sites for mental strategy classification.


Assuntos
Interfaces Cérebro-Computador , Imaginação , Imageamento por Ressonância Magnética/métodos , Movimento , Adulto , Encéfalo/fisiologia , Estudos de Viabilidade , Feminino , Humanos , Imageamento por Ressonância Magnética/normas , Masculino , Desempenho Psicomotor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...