Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 36(32): 9388-9398, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32687375

RESUMO

In this work, slanted, kinked, and straight silicon nanowires (SiNWs) are fabricated on Si(111) and (100) substrates using a facile two-step metal-assisted chemical etching nanofabrication technique. We systematically investigated the effect of crystallography, morphology of Ag catalyst, and composition of etchant on the etch profile of Ag catalyst on Si(111) and (100) substrates. We found that the movement of AgNPs inside the Si is determined by physiochemical events such as Ag/Ag interaction, Ag/Si contact, and diffusion kinetics. Further, from detailed TEM and micro-Raman spectroscopy analyses, we demonstrate that the metal catalyst moves in the crystallographically preferred etching direction (viz., <100>) only when the interface effect is not predominant. Further, the metal-assisted chemical etching (MACE) system is highly stable at low-concentration plating and etching solutions, but at high concentrations, the system loses its stability and becomes highly random, leading to the movement of Ag catalyst in directions other than ⟨100⟩. In addition, our studies reveal that Ag nanostructures growth on Si(111) and (100) substrates through galvanic displacement is controlled by substrate symmetry and surface bond density. Finally, we demonstrate that by using an optimized balance between the Ag morphology and concentration of the etchant, the angle in slanted SiNWs, kink position in kinked SiNWs, and aspect ratio of straight SiNWs can be controlled judiciously, leading to enhanced optical absorption in the broadband solar spectrum.

2.
Appl Opt ; 56(27): 7525-7532, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-29047727

RESUMO

The DC magnetron sputter grown Co/Ti multilayers, with ultra-low bi-layer thicknesses and with Co layers deposited under mixed ambience of argon and dry air, have been investigated for use in the water window soft x-ray regime of 23-44 Å. Initially, deposition parameters have been optimized for obtaining smooth and continuous low thickness Co and Ti single-layer films, and, then, multilayers with five bi-layers of various bi-layer thicknesses were deposited. The samples have been primarily characterized by the grazing incidence x-ray reflectivity (GIXR) measurements with a hard x-ray laboratory source. Subsequently, a set of multilayers with an increasing number of bi-layers has been deposited with a constant bi-layer thickness of 42 Å. GIXR results show that hard x-ray reflectivity at the first Bragg peak is maximum for the 20 bi-layer sample, beyond which the reflectivity decreases. Finally, the samples with the most promising hard x-ray GIXR have been used for soft x-ray reflectivity measurement with synchrotron radiation, and ∼2.5% peak reflectivity has been obtained in the multilayer sample at a 30.7 Å wavelength for a 21.5° grazing angle of incidence. The fitting results for both hard and soft x-ray reflectivities have been thoroughly investigated to find out the cause of the saturation of reflectivity with the increase in the number of bi-layers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...