Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21265769

RESUMO

The autoantibody profile associated with known autoimmune diseases in patients with COVID-19 or multisystem inflammatory syndrome in children (MIS-C) remains poorly defined. Here we show that adults with COVID-19 had a moderate prevalence of autoantibodies against the lung antigen KCNRG, and SLE-associated Smith autoantigen. Children with COVID-19 rarely had autoantibodies; one of 59 children had GAD65 autoantibodies associated with acute insulin-dependent diabetes. While autoantibodies associated with SLE/Sjogrens syndrome (Ro52, Ro60, and La) and/or autoimmune gastritis (gastric ATPase) were detected in 74% (40/54) of MIS-C patients, further analysis of these patients and of children with Kawasaki disease (KD), showed that the administration of intravenous immunoglobulin (IVIG) was largely responsible for detection of these autoantibodies in both groups of patients. Monitoring in vivo decay of the autoantibodies in MIS-C children showed that the IVIG-derived Ro52, Ro60, and La autoantibodies declined to undetectable levels by 45-60 days, but gastric ATPase autoantibodies declined more slowly requiring >100 days until undetectable. Together these findings demonstrate that administration of high-dose IVIG is responsible for the detection of several autoantibodies in MIS-C and KD. Further studies are needed to investigate autoantibody production in MIS-C patients, independently from IVIG administration.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-439347

RESUMO

A significant surge in cases of multisystem inflammatory syndrome in children (MIS-C, also called Pediatric Inflammatory Multisystem Syndrome - PIMS) has been observed amidst the COVID-19 pandemic. MIS-C shares many clinical features with Kawasaki disease (KD), although clinical course and outcomes are divergent. We analyzed whole blood RNA sequences, serum cytokines, and formalin fixed heart tissues from these patients using a computational toolbox of two gene signatures, i.e., the 166-gene viral pandemic (ViP) signature, and its 20-gene severe (s)ViP subset that were developed in the context of SARS-CoV-2 infection and a 13-transcript signature previously demonstrated to be diagnostic for KD. Our analyses revealed that KD and MIS-C are on the same continuum of the host immune response as COVID-19. While both the pediatric syndromes converge upon an IL15/IL15RA-centric cytokine storm, suggestive of shared proximal pathways of immunopathogenesis, they diverge in other laboratory parameters and cardiac phenotypes. The ViP signatures also revealed unique targetable cytokine pathways in MIS-C, place MIS-C farther along in the spectrum in severity compared to KD and pinpoint key clinical (reduced cardiac function) and laboratory (thrombocytopenia and eosinopenia) parameters that can be useful to monitor severity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...