Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 443: 138556, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38290299

RESUMO

Potato is one of the most important crops worldwide, to feed a fast-growing population. In addition to providing energy, fiber, vitamins, and minerals, potato storage proteins are considered as one of the most valuable sources of non-animal proteins due to their high essential amino acid (EAA) index. However, low tuber protein content and limited knowledge about potato storage proteins restrict their widespread utilization in the food industry. Here, we report a proof-of-concept study, using deep learning-based protein design tools, to characterize the biological and chemical characteristics of patatins, the major potato storage proteins. This knowledge was then employed to design multiple cysteines on the patatin surface to build polymers linked by disulfide bonds, which significantly improved viscidity and nutrient of potato flour dough. Our study shows that deep learning-based protein design strategies are efficient to characterize and to create novel proteins for future food sources.


Assuntos
Aprendizado Profundo , Solanum tuberosum , Solanum tuberosum/química , Proteínas de Plantas/metabolismo , Tubérculos/química , Carboidratos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA