Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22278443

RESUMO

BackgroundThe decline in COVID-19 mRNA vaccine effectiveness (VE) is well established, however the impact of variant-specific immune evasion and waning protection remains unclear. Here, we use whole-genome-sequencing (WGS) to tease apart the contribution of these factors on the decline observed following the introduction of the Delta variant. Further, we evaluate the utility of calendar-period-based variant classification as an alternative to WGS. MethodsWe conducted a test-negative-case-control study among people who received SARS-CoV-2 RT-PCR testing in the Yale New Haven Health System between April 1 and August 24, 2021. Variant classification was performed using WGS and secondarily by calendar-period. We estimated VE as one minus the ratio comparing the odds of infection among vaccinated and unvaccinated people. ResultsOverall, 2,029 cases (RT-PCR positive, sequenced samples) and 343,985 controls (negative RT-PCRs) were included. VE 14-89 days after 2nd dose was significantly higher against WGS-classified Alpha infection (84.4%, 95% confidence interval: 75.6-90.0%) than Delta infection (68.9%, CI: 58.0-77.1%, p-value: 0.013). The odds of WGS-classified Delta infection were significantly higher 90-149 than 14-89 days after 2nd dose (Odds ratio: 1.6, CI: 1.2-2.3). While estimates of VE against calendar-period-classified infections approximated estimates against WGS-classified infections, calendar-period-based classification was subject to outcome misclassification (35% during Alpha period, 4% during Delta period). ConclusionsThese findings suggest that both waning protection and variant-specific immune evasion contributed to the lower effectiveness. While estimates of VE against calendar-period-classified infections mirrored that against WGS-classified infections, our analysis highlights the need for WGS when variants are co-circulating and misclassification is likely. Summary of main pointsUsing whole genome sequencing, we provide direct evidence of waning vaccine effectiveness and variant-specific immune evasion during the Delta wave. Effectiveness estimates against calendar-period-classified infections approximated estimates against WGS-classified infections, however, calendar-period classification was associated with a variant misclassification.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20221804

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease-19 (COVID-19), a respiratory illness that can result in hospitalization or death. We investigated associations between rare genetic variants and seven COVID-19 outcomes in 543,213 individuals, including 8,248 with COVID-19. After accounting for multiple testing, we did not identify any clear associations with rare variants either exome-wide or when specifically focusing on (i) 14 interferon pathway genes in which rare deleterious variants have been reported in severe COVID-19 patients; (ii) 167 genes located in COVID-19 GWAS risk loci; or (iii) 32 additional genes of immunologic relevance and/or therapeutic potential. Our analyses indicate there are no significant associations with rare protein-coding variants with detectable effect sizes at our current sample sizes. Analyses will be updated as additional data become available, with results publicly browsable at https://rgc-covid19.regeneron.com.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...