Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-478946

RESUMO

We assessed the affinities of the therapeutic monoclonal antibodies (mAbs) cilgavimab, tixagevimab, sotrovimab, casirivimab, and imdevimab to the receptor binding domain (RBD) of wild type, Delta, and Omicron spike. The Omicron RBD affinities of cilgavimab, tixagevimab, casirivimab, and imdevimab decreased by at least two orders of magnitude relative to their wild type equivalents, whereas sotrovimab binding was less severely impacted. These affinity reductions correlate with reduced antiviral activities of these antibodies, suggesting that simple affinity measurements can serve as an indicator for activity before challenging and time-consuming virus neutralization assays are performed. We also compared the properties of these antibodies to serological fingerprints (affinities and concentrations) of wild type RBD specific antibodies in 74 convalescent sera. The affinities of the therapeutic mAbs to wild type and Delta RBD were in the same range as the polyclonal response in the convalescent sera indicative of their high antiviral activities against these variants. However, for Omicron RBD, only sotrovimab retained affinities that were within the range of the polyclonal response, in agreement with its high activity against Omicron. Serological fingerprints thus provide important context to affinities and antiviral activity of mAb drugs and could guide the development of new therapeutics.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21253975

RESUMO

Treatment and prevention of coronavirus disease 2019 (COVID-19) have attempted to harness the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) including the development of successful COVID-19 vaccines and therapeutics (e.g., Remdesivir, convalescent plasma [CP]). Evidence that SARS-CoV-2 exists as quasispecies evolving locally suggests that immunological differences may exist that could impact the effectiveness of antibody-based treatments and vaccines. Regional variants of SARS-CoV-2 were reported in the USA beginning in November 2020 but were likely present earlier. There is available evidence that the effectiveness of CP obtained from donors infected with earlier strains in the pandemic may be reduced when tested for neutralization against newer SARS-Cov-2 variants. Using data from the Expanded Access Program to convalescent plasma, we used a gradient-boosting machine to identify predictors of 30-day morality and a series of regression models to estimate the relative risk of death at 30 days post-transfusion for those receiving near sourced plasma (defined as plasma transported [≤] 150 miles) vs. distantly sourced plasma (> 150 miles). Our results show a lower risk of death at 30 days post-transfusion for near sourced plasma. Additional analyses stratified by disease severity, time to treatment, and donor region further supported these findings. The results of this study suggest that near sourced plasma is superior to distantly sourced plasma, which has implications for interpreting the results of clinical studies and designing effective treatment of COVID-19 patients as additional local variant are likely to emerge.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20248264

RESUMO

BackgroundAfter receiving a COVID-19 vaccine, most recipients want to know if they are protected from infection and for how long. Since neutralizing antibodies are a correlate of protection, we developed a lateral flow assay (LFA) that measures levels of neutralizing antibodies from a drop of blood. The LFA is based on the principle that neutralizing antibodies block binding of the receptor-binding domain (RBD) to angiotensin-converting enzyme 2 (ACE2). MethodsThe ability of the LFA was assessed to correctly measure neutralization of sera, plasma or whole blood from patients with COVID-19 using SARS-CoV-2 microneutralization assays. We also determined if the LFA distinguished patients with seasonal respiratory viruses from patients with COVID-19. To demonstrate the usefulness of the LFA, we tested previously infected and non-infected COVID-19 vaccine recipients at baseline and after first and second vaccine doses. ResultsThe LFA compared favorably with SARS-CoV-2 microneutralization assays with an area under the ROC curve of 98%. Sera obtained from patients with seasonal coronaviruses did not show neutralizing activity in the LFA. After a single mRNA vaccine dose, 87% of previously infected individuals demonstrated high levels of neutralizing antibodies. However, if individuals were not previously infected only 24% demonstrated high levels of neutralizing antibodies after one vaccine dose. A second dose boosted neutralizing antibody levels just 8% higher in previously infected individuals, but over 63% higher in non-infected individuals. ConclusionsA rapid, semi-quantitative, highly portable and inexpensive neutralizing antibody test might be useful for monitoring rise and fall in vaccine-induced neutralizing antibodies to COVID-19.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20169359

RESUMO

ImportancePassive antibody transfer is a longstanding treatment strategy for infectious diseases that involve the respiratory system. In this context, human convalescent plasma has been used to treat coronavirus disease 2019 (COVID-19), but the efficacy remains uncertain. ObjectiveTo explore potential signals of efficacy of COVID-19 convalescent plasma. DesignOpen-label, Expanded Access Program (EAP) for the treatment of COVID-19 patients with human convalescent plasma. SettingMulticenter, including 2,807 acute care facilities in the US and territories. ParticipantsAdult participants enrolled and transfused under the purview of the US Convalescent Plasma EAP program between April 4 and July 4, 2020 who were hospitalized with (or at risk of) severe or life threatening acute COVID-19 respiratory syndrome. InterventionTransfusion of at least one unit of human COVID-19 convalescent plasma using standard transfusion guidelines at any time during hospitalization. Convalescent plasma was donated by recently-recovered COVID-19 survivors, and the antibody levels in the units collected were unknown at the time of transfusion. Main Outcomes and MeasuresSeven and thirty-day mortality. ResultsThe 35,322 transfused patients had heterogeneous demographic and clinical characteristics. This cohort included a high proportion of critically-ill patients, with 52.3% in the intensive care unit (ICU) and 27.5% receiving mechanical ventilation at the time of plasma transfusion. The seven-day mortality rate was 8.7% [95% CI 8.3%-9.2%] in patients transfused within 3 days of COVID-19 diagnosis but 11.9% [11.4%-12.2%] in patients transfused 4 or more days after diagnosis (p<0.001). Similar findings were observed in 30-day mortality (21.6% vs. 26.7%, p<0.0001). Importantly, a gradient of mortality was seen in relation to IgG antibody levels in the transfused plasma. For patients who received high IgG plasma (>18.45 S/Co), seven-day mortality was 8.9% (6.8%, 11.7%); for recipients of medium IgG plasma (4.62 to 18.45 S/Co) mortality was 11.6% (10.3%, 13.1%); and for recipients of low IgG plasma (<4.62 S/Co) mortality was 13.7% (11.1%, 16.8%) (p=0.048). This unadjusted dose-response relationship with IgG was also observed in thirty-day mortality (p=0.021). The pooled relative risk of mortality among patients transfused with high antibody level plasma units was 0.65 [0.47-0.92] for 7 days and 0.77 [0.63-0.94] for 30 days compared to low antibody level plasma units. Conclusions and RelevanceThe relationships between reduced mortality and both earlier time to transfusion and higher antibody levels provide signatures of efficacy for convalescent plasma in the treatment of hospitalized COVID-19 patients. This information may be informative for the treatment of COVID-19 and design of randomized clinical trials involving convalescent plasma. Trial RegistrationClinicalTrials.gov Identifier: NCT04338360 Key PointsO_ST_ABSQuestionC_ST_ABSDoes transfusion of human convalescent plasma reduce mortality among hospitalized COVID-19 patients? FindingsTransfusion of convalescent plasma with higher antibody levels to hospitalized COVID-19 patients significantly reduced mortality compared to transfusions with low antibody levels. Transfusions within three days of COVID-19 diagnosis yielded greater reductions in mortality. MeaningEmbedded in an Expanded Access Program providing access to COVID-19 convalescent plasma and designed to assess its safety, several signals consistent with efficacy of convalescent plasma in the treatment of hospitalized COVID-19 patients emerged.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-117549

RESUMO

We here describe the development and validation of IMMUNO-COV, a high-throughput clinical test to quantitatively measure SARS-CoV-2-neutralizing antibodies, the specific subset of anti-SARS-CoV-2 antibodies that block viral infection. The test measures the capacity of serum or purified antibodies to neutralize a recombinant Vesicular Stomatitis Virus (VSV) encoding the SARS-CoV-2 spike glycoprotein. This recombinant virus (VSV-SARS-CoV-2-S-{Delta}19CT) induces fusion in Vero cell monolayers, which is detected as luciferase signal using a dual split protein (DSP) reporter system. VSV-SARS-CoV-2-S-{Delta}19CT infection was blocked by monoclonal -SARS-CoV-2-spike antibodies and by plasma or serum from SARS-CoV-2 convalescing individuals. The assay exhibited 100% specificity in validation tests, and across all tests zero false positives were detected. In blinded analyses of 230 serum samples, only two unexpected results were observed based on available clinical data. We observed a perfect correlation between results from our assay and 80 samples that were also assayed using a commercially available ELISA. To quantify the magnitude of the anti-viral response, we generated a calibration curve by adding stepped concentrations of -SARS-CoV-2-spike monoclonal antibody to pooled SARS-CoV-2 seronegative serum. Using the calibration curve and a single optimal 1:100 serum test dilution, we reliably measured neutralizing antibody levels in each test sample. Virus neutralization units (VNUs) calculated from the assay correlated closely (p < 0.0001) with PRNTEC50 values determined by plaque reduction neutralization test against a clinical isolate of SARS-CoV-2. Taken together, these results demonstrate that the IMMUNO-COV assay accurately quantitates SARS-CoV-2 neutralizing antibodies in human sera and therefore is a potentially valuable addition to the currently available serological tests. The assay can provide vital information for comparing immune responses to the various SARS-CoV-2 vaccines that are currently in development, or for evaluating donor eligibility in convalescent plasma therapy studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...