Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38586016

RESUMO

Lipid droplets are fat storage organelles composed of a protein envelope and lipid rich core. Regulation of this protein envelope underlies differential lipid droplet formation and function. In melanoma, lipid droplet formation has been linked to tumor progression and metastasis, but it is unknown whether lipid droplet proteins play a role. To address this, we performed proteomic analysis of the lipid droplet envelope in melanoma. We found that lipid droplet proteins were differentially enriched in distinct melanoma states; from melanocytic to undifferentiated. DHRS3, which converts all-trans-retinal to all-trans-retinol, is upregulated in the MITFLO/undifferentiated/neural crest-like melanoma cell state and reduced in the MITFHI/melanocytic state. Increased DHRS3 expression is sufficient to drive MITFHI/melanocytic cells to a more undifferentiated/invasive state. These changes are due to retinoic acid mediated regulation of melanocytic genes. Our data demonstrate that melanoma cell state can be regulated by expression of lipid droplet proteins which affect downstream retinoid signaling.

2.
Nat Commun ; 14(1): 3192, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268606

RESUMO

Melanoma exhibits numerous transcriptional cell states including neural crest-like cells as well as pigmented melanocytic cells. How these different cell states relate to distinct tumorigenic phenotypes remains unclear. Here, we use a zebrafish melanoma model to identify a transcriptional program linking the melanocytic cell state to a dependence on lipid droplets, the specialized organelle responsible for lipid storage. Single-cell RNA-sequencing of these tumors show a concordance between genes regulating pigmentation and those involved in lipid and oxidative metabolism. This state is conserved across human melanoma cell lines and patient tumors. This melanocytic state demonstrates increased fatty acid uptake, an increased number of lipid droplets, and dependence upon fatty acid oxidative metabolism. Genetic and pharmacologic suppression of lipid droplet production is sufficient to disrupt cell cycle progression and slow melanoma growth in vivo. Because the melanocytic cell state is linked to poor outcomes in patients, these data indicate a metabolic vulnerability in melanoma that depends on the lipid droplet organelle.


Assuntos
Gotículas Lipídicas , Melanoma , Animais , Humanos , Gotículas Lipídicas/metabolismo , Peixe-Zebra/genética , Melanoma/patologia , Melanócitos/metabolismo , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos/genética
3.
ACS Appl Mater Interfaces ; 14(24): 27675-27685, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35670525

RESUMO

Rubber band ligation is a commonly used method for the removal of tissue abnormalities. Most often, rubber band ligation is performed to remove internal hemorrhoids unresponsive to first line treatments to avoid surgery. While the procedure is considered safe, patients experience mild to significant pain and discomfort until the tissue sloughs off. As patients often require multiple bandings and sessions, reducing these side effects can have a considerable effect on patient adherence and quality of life. To reduce pain and discomfort, we developed drug-eluting rubber bands for ligation procedures. We investigated the potential for a band to elute anesthetics and drug combinations to durably manage pain for a period of up to 5 days while exhibiting similar mechanical properties to conventional rubber bands. We show that the rubber bands retain their mechanical properties despite significant drug loading. Lidocaine, released from the bands, successfully altered the calcium dynamics of cardiomyocytes in vitro and modulated heart rate in zebrafish embryos, while the bands exhibited lower cytotoxicity than conventional bands. Ex vivo studies demonstrated substantial local drug release in enteric tissues. These latex-free bands exhibited sufficient mechanical and drug-eluting properties to serve both ligation and local analgesic functions, potentially enabling pain reduction for multiple indications.


Assuntos
Qualidade de Vida , Peixe-Zebra , Animais , Humanos , Ligadura/efeitos adversos , Ligadura/métodos , Dor/etiologia , Resultado do Tratamento
4.
Elife ; 102021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34114952

RESUMO

Lipid droplets are lipid storage organelles found in nearly all cell types from adipocytes to cancer cells. Although increasingly implicated in disease, current methods to study lipid droplets in vertebrate models rely on static imaging or the use of fluorescent dyes, limiting investigation of their rapid in vivo dynamics. To address this, we created a lipid droplet transgenic reporter in whole animals and cell culture by fusing tdTOMATO to Perilipin-2 (PLIN2), a lipid droplet structural protein. Expression of this transgene in transparent casper zebrafish enabled in vivo imaging of adipose depots responsive to nutrient deprivation and high-fat diet. Simultaneously, we performed a large-scale in vitro chemical screen of 1280 compounds and identified several novel regulators of lipolysis in adipocytes. Using our Tg(-3.5ubb:plin2-tdTomato) zebrafish line, we validated several of these novel regulators and revealed an unexpected role for nitric oxide in modulating adipocyte lipid droplets. Similarly, we expressed the PLIN2-tdTOMATO transgene in melanoma cells and found that the nitric oxide pathway also regulated lipid droplets in cancer. This model offers a tractable imaging platform to study lipid droplets across cell types and disease contexts using chemical, dietary, or genetic perturbations.


Organisms need fat molecules as a source of energy and as building blocks, but these 'lipids' can also damage cells if they are present in large amounts. Cells guard against such toxicity by safely sequestering lipids in specialized droplets that participate in a range of biological processes. For instance, these structures can quickly change size to store or release lipids depending on the energy demands of a cell. It is possible to image lipid droplets ­ using, for example, dyes that preferentially stain fat ­ but often these methods can only yield a snapshot: tracking lipid droplet dynamics over time remains difficult. Lumaquin, Johns et al. therefore set out to develop a new method that could label lipid droplets and monitor their behaviour 'live' in the cells of small, transparent zebrafish larvae. First, the fish were genetically manipulated so that a key protein found in lipid droplets would carry a fluorescent tag: this made the structures strongly fluorescent and easy to track over time. And indeed, Lumaquin, Johns et al. could monitor changes in the droplets depending on the fish diet, with the structures getting bigger when the animal received rich food, and shrinking when resources were scarce. Finally, experiments were conducted to screen for compounds that could lead to lipids being released in fat cells. The new imaging technique was then used to confirm the effect of these molecules in live cells, revealing an unexpected role for a signalling molecule known as nitric oxide, which also turned out to be regulating lipid droplets in cancerous cells. Further work then showed that drugs affecting nitric oxide could modulate lipid droplet size in both normal and tumor cells. This work has validated a new method to study the real-time behavior of lipid droplets and their responses to different stimuli in living cells. In the future, Lumaquin, Johns et al. hope that the technique will help to shed new light on how lipids are involved in both healthy and abnormal biological processes.


Assuntos
Adipócitos/metabolismo , Gotículas Lipídicas/metabolismo , Proteínas Luminescentes/metabolismo , Perilipina-2/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Tecido Adiposo/metabolismo , Animais , Linhagem Celular Tumoral , Dieta Hiperlipídica , Metabolismo dos Lipídeos , Lipólise , Melanoma/metabolismo , Óxido Nítrico/metabolismo , Compostos de Fenilureia/farmacologia , Peixe-Zebra/metabolismo
5.
Dev Cell ; 55(3): 289-297.e4, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32916093

RESUMO

Lysosome function is essential for cellular homeostasis, but quality-control mechanisms that maintain healthy lysosomes remain poorly characterized. Here, we developed a method to measure lysosome turnover and use this to identify a selective mechanism of membrane degradation that involves lipidation of the autophagy protein LC3 onto lysosomal membranes and the formation of intraluminal vesicles through microautophagy. This mechanism is induced in response to metabolic stress resulting from glucose starvation or by treatment with pharmacological agents that induce osmotic stress on lysosomes. Cells lacking ATG5, an essential component of the LC3 lipidation machinery, show reduced ability to regulate lysosome size and degradative capacity in response to activation of this mechanism. These findings identify a selective mechanism of lysosome membrane turnover that is induced by stress and uncover a function for LC3 lipidation in regulating lysosome size and activity through microautophagy.


Assuntos
Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Nutrientes/deficiência , Autofagia , Proteína 5 Relacionada à Autofagia/metabolismo , Linhagem Celular , Endossomos/metabolismo , Endossomos/ultraestrutura , Glucose/deficiência , Glutamina/metabolismo , Humanos , Lipídeos/química , Lisossomos/ultraestrutura , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
6.
DNA Repair (Amst) ; 78: 102-113, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31005681

RESUMO

Homologous recombination (HR)-based repair during DNA replication can apparently utilize several partially overlapping repair pathways in response to any given lesion. A key player in HR repair is the Sgs1-Top3-Rmi1 (STR) complex, which is critical for resolving X-shaped recombination intermediates formed following bypass of methyl methanesulfonate (MMS)-induced damage. STR mutants are also sensitive to the ribonucleotide reductase inhibitor, hydroxyurea (HU), but unlike MMS treatment, HU treatment is not accompanied by X-structure accumulation, and it is thus unclear how STR functions in this context. Here we provide evidence that HU-induced fork stalling enlists Top3 prior to recombination intermediate formation. The resistance of sgs1Δ mutants to HU is enhanced by the absence of the putative SUMO (Small Ubiquitin MOdifier)-targeted ubiquitin ligase, Uls1, and we demonstrate that Top3 is required for this enhanced resistance and for coordinated breaks and subsequent d-loop formation at forks stalled at the ribosomal DNA (rDNA) replication fork block (RFB). We also find that HU resistance depends on the catalytic activity of the E3 SUMO ligase, Mms21, and includes a rapid Rad51-dependent restart mechanism that is different from the slow Rad51-independent HR fork restart mechanism operative in sgs1Δ ULS1+ mutants. These data support a model in which repair of HU-induced damage in sgs1Δ mutants involves an error-prone break-induced replication pathway but, in the absence of Uls1, shifts to one that is higher-fidelity and involves the formation of Rad51-dependent d-loops.


Assuntos
DNA Helicases/deficiência , DNA Helicases/genética , Replicação do DNA/genética , Deleção de Genes , RecQ Helicases/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Recombinação Homóloga/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
7.
Nat Commun ; 9(1): 1223, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29581427

RESUMO

The proteasome is a complex protease critical for protein quality control and cell regulation, and its dysfunction is associated with cancer and other diseases. However, the mechanisms that control proteasome activity  in normal and malignant cells remain unclear. Here we report that TRIM11 enhances degradation of aberrant and normal regulatory proteins, and augments overall rate of proteolysis. Mechanistically, TRIM11 binds to both the proteasome and USP14, a deubiquitinase that prematurely removes ubiquitins from proteasome-bound substrates and also noncatalytically inhibits the proteasome, and precludes their association, thereby increasing proteasome activity. TRIM11 promotes cell survival and is upregulated upon heat shock. Moreover, TRIM11 is required for tumor growth, and increased expression of TRIM11 correlates with poor clinical survival. These findings identify TRIM11 as an important activator of the proteasome, define a pathway that adjusts proteasome activity, and reveal a mechanism by which tumor cells acquire higher degradative power to support oncogenic growth.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas com Motivo Tripartido/fisiologia , Ubiquitina Tiolesterase/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Animais , Carcinogênese , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Enzimas Desubiquitinantes/metabolismo , Ativação Enzimática , Homeostase , Humanos , Camundongos , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Proteólise , Proteínas com Motivo Tripartido/química , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/química , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...