Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharm Res ; 40(7): 1641-1656, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36720831

RESUMO

Administration of long-acting injectable suspensions is an increasingly common approach to increasing patient compliance and improving therapeutic efficacy through less frequent dosing. While several long-acting suspensions have recently been marketed, parameters modulating drug absorption from suspension-based formulations are not well understood. Further, methods for predicting clinical pharmacokinetic data from preclinical studies are not well established. Together, these limitations hamper compound selection, formulation design and formulation selection through heavy reliance on iterative optimization in preclinical and clinical studies. This article identifies key parameters influencing absorption from suspension-based formulations through compilation and analysis of preclinical and clinical pharmacokinetic data of seven compounds marketed as suspensions; achievable margins for predicting the clinical dose and input rate from preclinical studies as a function of the preclinical species, the clinical injection location and the intended therapeutic duration were also established.


Assuntos
Suspensões , Humanos , Estudos Retrospectivos , Injeções
2.
Expert Opin Drug Deliv ; 18(5): 577-593, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33275066

RESUMO

Introduction: Drug eluting implants offer patient convenience and improved compliance through less frequent dosing, eliminating repeated, painful injections and providing localized, site specific delivery with applications in contraception, ophthalmology, and oncology.Areas covered: This review provides an overview of available implant products, design approaches, biodegradable and non-biodegradable polymeric materials, and fabrication techniques with a focus on commercial applications and industrial drug product development. Developing trends in the field, including expanded availability of suitable excipients, development of novel materials, scaled down manufacturing process, and a wider understanding of the implant development process are discussed and point to opportunities for differentiated drug eluting implant products.Expert opinion: In the future, long-acting implants will be important clinical tools for prophylaxis and treatment of global health challenges, especially for infectious diseases, to reduce the cost and difficulty of treating chronic indications, and to prolong local delivery in difficult to administer parts of the body. These products will help improve patient safety, adherence, and comfort.


Assuntos
Sistemas de Liberação de Medicamentos , Preparações Farmacêuticas , Desenvolvimento de Medicamentos , Implantes de Medicamento , Excipientes , Humanos
3.
3D Print Med ; 5(1): 2, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30715677

RESUMO

PURPOSE: Microneedle patches are arrays of tiny needles that painlessly pierce the skin to deliver medication into the body. Biocompatible microneedles are usually fabricated via molding of a master structure. Microfabrication techniques used for fabricating these master structures are costly, time intensive, and require extensive expertise to control the structure's geometry of the structure, despite evidence that microneedle geometry is a key design parameter. Here, a commercially available 3D printer is utilized, for the first time, to quickly and easily manufacture microneedle masters. DESIGN/METHODOLOGY/APPROACH: Because commercially available 3D printers are not typically used for micron-scale fabrication, the influence of three different sources of error- stair-stepping, aliasing, and light abberations- on the resulting structure is investigated. A custom Matlab code is written to control the light intensity projected off of each individual micromirror (through grayscale) at a given time. The effect of the layer height, the number of layers, and grayscale on the sharpness, surface texture, and dimensional fidelity of the final structure is described. FINDINGS: The Autodesk Ember is successfully utilized to fabricate sharp microneedles with a tip radius of approximately 15 µm in less than 30 min per patch (as compared to weeks to months for existing approaches). Utilization of grayscale improves surface texture and sharpness, and dimensional fidelity within ±5% of desired dimensions is achieved. ORIGINALITY/VALUE: The described 3D printing technique enables investigators to accurately fabricate microneedles within minutes at low cost. Rapid, iterative optimization of microneedle geometry through 3D printing will accelerate microneedle research through improved understanding of the relationship between microneedle structure and function.

4.
PLoS One ; 11(9): e0162518, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27607247

RESUMO

Microneedles, arrays of micron-sized needles that painlessly puncture the skin, enable transdermal delivery of medications that are difficult to deliver using more traditional routes. Many important design parameters, such as microneedle size, shape, spacing, and composition, are known to influence efficacy, but are notoriously difficult to alter due to the complex nature of microfabrication techniques. Herein, we utilize a novel additive manufacturing ("3D printing") technique called Continuous Liquid Interface Production (CLIP) to rapidly prototype sharp microneedles with tuneable geometries (size, shape, aspect ratio, spacing). This technology allows for mold-independent, one-step manufacturing of microneedle arrays of virtually any design in less than 10 minutes per patch. Square pyramidal CLIP microneedles composed of trimethylolpropane triacrylate, polyacrylic acid and photopolymerizable derivatives of polyethylene glycol and polycaprolactone were fabricated to demonstrate the range of materials that can be utilized within this platform for encapsulating and controlling the release of therapeutics. These CLIP microneedles effectively pierced murine skin ex vivo and released the fluorescent drug surrogate rhodamine.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Microinjeções , Acrilatos/farmacologia , Animais , Corantes Fluorescentes/farmacologia , Camundongos Nus , Permeabilidade/efeitos dos fármacos , Absorção Cutânea/efeitos dos fármacos
5.
Science ; 347(6228): 1349-52, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25780246

RESUMO

Additive manufacturing processes such as 3D printing use time-consuming, stepwise layer-by-layer approaches to object fabrication. We demonstrate the continuous generation of monolithic polymeric parts up to tens of centimeters in size with feature resolution below 100 micrometers. Continuous liquid interface production is achieved with an oxygen-permeable window below the ultraviolet image projection plane, which creates a "dead zone" (persistent liquid interface) where photopolymerization is inhibited between the window and the polymerizing part. We delineate critical control parameters and show that complex solid parts can be drawn out of the resin at rates of hundreds of millimeters per hour. These print speeds allow parts to be produced in minutes instead of hours.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA